Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:29:39.167Z Has data issue: false hasContentIssue false

Solubility Modelling of Cements: Implications for Radioactive Waste Immobilisation.

Published online by Cambridge University Press:  28 February 2011

F.P. Glasser
Affiliation:
University of Aberdeen, Department of Chemistry, Meston Walk, Old Aberdeen AB9 2UE, Scotland
D.E. Macphee
Affiliation:
University of Aberdeen, Department of Chemistry, Meston Walk, Old Aberdeen AB9 2UE, Scotland
E.E. Lachowski
Affiliation:
University of Aberdeen, Department of Chemistry, Meston Walk, Old Aberdeen AB9 2UE, Scotland
Get access

Abstract

The suitability of cement matrices for the long-term immobilisation of radionuclides cannot be predicted from short-term experimental data alone, because the chemical properties of cementitious systems change continuously over the repository lifetime. To model such changes is complex, so a stepwise approach has been adopted. A chemically simplified model for the solubility and compositional properties of calcium silicate hydrate gels in the system CaO-SiO2 -H20 was previously developed but has now been extended and improved and is applicable to gels in the wider composition range 0.8 < Ca/Si < 1.7. The effects of silicate speciation in aqueous solution on the formation of the solid phase have been more fully considered and the dissolution equilibrium has been revised. Solubility products and free energies of C-S-H formation have been evaluated and predictive applications of the model are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kroll, A.A. and Read, D., DOE Tech. Rep. TR-WSA-18, 1986.Google Scholar
2. Cross, J.E., Reid, D., Smith, G.L. and Williams, D.R., DOE Report No. TN-UWIST-3, 1985.Google Scholar
3. Atkinson, A., AERE Paper R11777, 1985.Google Scholar
4. Glasser, F.P., Rahman, A.A., Macphee, D.E., Atkins, M., Beckley, N. and Lachowski, E.E., DOE Report No. RW86.084, 1986.Google Scholar
5. Diamond, S. in Hydraulic Cement Pastes, Their Structure and Properties., (Cem. Concr. Assoc., Slough, 1976), p 2.Google Scholar
6. Taylor, H.F.W., J. Chem. Soc., 1950, 3682.CrossRefGoogle Scholar
7. Jennings, H.M., J. Am. Ceram. Soc., in press.Google Scholar
8. Greenberg, S.A., Chang, T.N. and Anderson, E., J. Phys. Chem., 64, 1151, (1960).CrossRefGoogle Scholar
9. Kantro, D.L., Brunauer, S. and Weise, C.H., J. Phys. Chem., 66, 1804, (1962).CrossRefGoogle Scholar
10. Mohan, K. and Taylor, H.F.W., Cem. Concr. Res., 12, 25, (1982).CrossRefGoogle Scholar
11. Glasser, L.S.D., Lachowski, E.E., Mohan, K. and Taylor, H.F.W., Cem. Concr. Res., 8, 733, (1978).CrossRefGoogle Scholar
12. Sarkar, A.K. and Roy, D.M., Cem. Concr. Res., 9, 343, (1979).CrossRefGoogle Scholar
13. Stade, H. and Wieker, W., Z. anorg. allg. Chem., 466, 55, (1980).CrossRefGoogle Scholar
14. Lawrence, F.W., PhD Thesis, Aberdeen University, 1983.Google Scholar
15. Hirljac, J.H., Wu, Z.Q. and Young, J.F., Cem. Concr. Res., 13, 837, (1983).CrossRefGoogle Scholar
16. Currell, B.R., Midgley, H.G., Montecinos, M. and Parsonage, J.R., Cem. Concr. Res., 15, 889, (1985).CrossRefGoogle Scholar
17. Claydon, N.J., Dobson, C.M., Groves, G.W., Hayes, C.J. and Rodger, S.A., Proc. Brit. Ceram. Soc., 35, 55, (1984).Google Scholar
18. Mohan, K. and Taylor, H.F.W., Cem. Concr. Res., 12, 25, (1982).CrossRefGoogle Scholar
19. Glasser, L.S. Dent, Lachowski, E.E., Qureshi, M.Y., Calhoun, H.P., Embree, D.J., Jamieson, W.D. and Masson, C.R., Cem. Concr. Res., 11, 775, (1981).CrossRefGoogle Scholar
20. Sierra, R., Proc. 7th Int. Cong. Chem. Cem., Paris, 3, VI/201, (1980).Google Scholar
21. Sillen, L.G. and Martell, A.E., Stability Constants, Special Publication 17, (Chem. Soc. London, 1964), pp 42,144.Google Scholar
22. Rayment, D.L. and Lachowski, E.E., Cem. Concr. Res., 14, 43, (1984).CrossRefGoogle Scholar
23. Glasser, F.P., Angus, M.J., McCulloch, C.E., Macphee, D.E. and Rahman, A.A., Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C.M., Stone, J.A. and Ewing, R.C., (Materials Research Society, Pittsburgh, 1985), pp 849858.Google Scholar
24. Lewis, G.N. and Randall, M., Thermodynamics, (McGraw-Hill, New York, (1961), pp 338, 345.Google Scholar
25. Greenberg, S.A. and Chang, T.N., J. Phys. Chem., 69, 182, (1965).CrossRefGoogle Scholar
26. Fujii, K. and Kondo, W., J. Chem. Soc. Dalton, 2, 645, (1981).CrossRefGoogle Scholar
27. Suzuki, K., Nishikawa, T. and Ito, S., Cem. Conc. Res., 15, 213, (1985).CrossRefGoogle Scholar
28. Babushkin, V.I., matveyev, G.M. and Mchedlov-Petrossyan, O.P. in Thermodynamics of Silicates, (Springer, Berlin, 1985), pp 426, 430, 432.CrossRefGoogle Scholar
29. Parkhurst, D.L., Thorstenson, D.C. and Plummer, N.L., NTIS Tech. Rep. PB81-167801, 1980, revised 1985.Google Scholar