No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
Interfacial reactions of ultrahigh vacuum deposited yttrium thin films on atomically clean (111)Si at low temperatures have been studied by both conventional and high resolution transmission electron microscopy, Auger electron spectroscopy and x-ray diffraction. A 10–nm–thick yttrium thin film, deposited onto (lll)Si at room temperature, was found to completely intermix with Si to form an 11–nm–thick amorphous interlayer. Crystalline Y5Si3 and Si were observed to nucleate first within the amorphous interlayer in samples annealed at temperatures lower than 200 °C. Epitaxial YSi2−x was found to be the only phase formed at the interface of amorphous interlayer and crystalline Si in samples annealed at temperatures higher than 250 °C. In as deposited 20– to 60–nm thick Y thin films on silicon samples, crystalline Y5Si3, Si, and YSi and a 2.5–nm–thick amorphous layer were found to be present simultaneously.