Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T11:42:12.605Z Has data issue: false hasContentIssue false

Soft Lithography Fabrication of Fully Flexible and Transparent all Organic FETs for Large Area Applications

Published online by Cambridge University Press:  26 February 2011

Piero Cosseddu
Affiliation:
piero.cosseddu@diee.unica.it, University of Cagliari, Department of Electrical and Electronic Engineering, Piazza d'Armi, 09123 Cagliari, Italy, Cagliari, 09123, Italy, +39 0706755769, +39 0706755782
Emanuele Orgiu
Affiliation:
emanuele.orgiu@diee.unica.it, University of Cagliari, Department of Electrical and Electronic Engineering, Piazza d'Armi, Cagliari, 09123, Italy
Annalisa Bonfiglio
Affiliation:
annalisa@diee.unica.it, University of Cagliari, Department of Electrical and Electronic Engineering, Piazza d'Armi, Cagliari, 09123, Italy
Get access

Abstract

Fully flexible and transparent all organic field effect transistors were fabricated by means of an innovative and inexpensive technique. A 1.8μm thick polyethylenetetherephtalate sheet, Mylar® (Du Pont), was used as gate dielectric and at the same time as mechanical support for the whole structure. We used pentacene, deposited by thermal sublimation, as semiconducting layer, whereas poly(ethylene-dioxythiophene)/polystyrene sulfonate (PEDOT/PSS) was used for the realization of the electrodes. Gate electrodes were realized by spin coating, while source and drain electrodes were patterned by micro-contact printing. We fabricated typical p-type field effect transistors, with mobilities up to 2 × 10−1cm2/Vs and Ion/Ioff up to 105, in a very simple and inexpensive way. It is worth to note that this technique allows the realization of bottom contact and top contact transistors. We realized both bottom contact and top contact devices on the same substrate and with the same active layer and we investigated how the structure itself and the active layer morphology influence the electrical properties in terms of hole mobility, Series Contact Resistance and parasitic capacitance effects. The comparison between top-contact and bottom-contact devices shows interesting marked differences that can be mainly attributed to a different PEDOT:PSS/semiconductor interface quality, influencing the most meaningful parameters. The flexibility of the obtained structure and the easy scalability of the technological process, suitable for roll to roll mass production processes, open the way for economic production of high-resolution organic devices

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reuss, R. H., Chalamala, B. R., Moussessian, A., Kane, Micheal G., Kumar, A., Zhang, D. C., Rrogers, J. A., Hatalis, M., Temple, D., Moddel, G., Eliasson, B. J., Estes, M. J., Kunze, J., Handy, E. S., Harmon, E. S., Salzman, D. B., Woodall, J. M., Alam, M. Ashraf, Murthy, J. Y., Jacobsen, S. C., Oliver, M., Markus, D., Campbell, P. M., and Snow, E., Proceeding of the IEEE, 93 1239 (2005)Google Scholar
2. Dimitrakopoulos, C. D., Malenfant, P. R. L., Adv. Mat. 14 99 (2002)Google Scholar
3. Nuzzo, R. G., PNAS 98 4827 (2001)Google Scholar
4. Edzer, H. E., Huitema, A., Gellink, G. H., Bas, J., Putten, P. H. Van der, Kuijk, K. E.,Hart, K. M., Cantatore, E., and Leeuw, D. M. De, Adv. Mat. 14 1201 (2002)Google Scholar
5. Kawase, T., Shimoda, T., Newsome, C., Sirringhaus, H. and Friend, R. H. Thin Solid Films 438 279 (2003)Google Scholar
6. Blanchet, G. B., Loo, Y. -L., Rogers, J. A., Gao, F. and Fincher, C. R. Appl. Phys. Lett. 82 463 (2003)Google Scholar
7. Becker, E., Parashkov, R., Ginev, G., Schnider, D., Hartmann, S., Brunetti, F., Dobbertin, T., Metzdorf, D., Riedl, T., Johannes, H. H. and Kowalsky, W. Appl. Phys. Lett. 83 4044(2003)Google Scholar
8. Blanchet, G. and Rogers, J., Journ. of Imag. Sc. and Techn. 47 303 (2003)Google Scholar
9. Lefenfeld, M., Blanchet, G. and Rogers, J., Adv. Mat. 15 1188(2003)Google Scholar
10. Calvert, P., Chem. Mater. 13 3299 (2001)Google Scholar
11. Xia, Y. and Whitesides, G. M., Annual Rev. Mater. Sc. 28 153 (1998)Google Scholar
12. Sundar, V. C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R. L., Someya, T., Gershenson, M. E. and Rogers, J.A., Science 303 1644 (2004)Google Scholar
13. Loo, Y. -L., Willett, R. W., Baldwin, K. and Rogers, J. A., Appl. Phys. Lett. 81 562(2002)Google Scholar
14. Cosseddu, P. and Bonfiglio, A., Appl. Phys. Lett. 88 023506(2006)Google Scholar
15. Bonfiglio, A., Mameli, F. and Sanna, O., Appl. Phys. Lett. 82 3550 (2002)Google Scholar
16. Santato, C., Manunza, I., Bonfiglio, A., Cicoria, F., Cosseddu, P., Zamboni, R. and Muccini, M. Appl. Phys. Lett. 86 141106 (2005)Google Scholar
17. Loi, A., Manunza, I. and Bonfiglio, A., Appl. Phys. Lett. 82 103512 (2005)Google Scholar
18. Michel, B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Junker, D., Kind, H., Renault, J.-P., Rothuizen, H., Schmid, H., Shmidt-Winkel, P., Stutz, R. and Wolf, H., IBM J. Res. & Dev. 45 697 (2001)Google Scholar
19. Xia, Y. and Whitesides, G. M., Angew. Chem. Int. Ed. 37 550 (1998)Google Scholar
20. Rolland, A., Richard, J., Kleider, J. P. and Mencaraglia, D., J. Electrochem. Soc. 3679 140 (1993)Google Scholar
21. Johnsson, S. K. M., Birgerson, J., Crispin, X., Greczynsky, G., Osikowicz, W., Gon, A. W. Denier van der, Salanek, W. R., Fahlman, M., Synth. Met. 139 1 (2003)Google Scholar