Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:13:09.546Z Has data issue: false hasContentIssue false

Small Molecule Diffusion in Polymer Ultra-Thin Films

Published online by Cambridge University Press:  26 February 2011

Ivan Ordaz
Affiliation:
ivan.ordaz@gatech.edu, Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, United States
Lovejeet Singh
Affiliation:
lovejeet.singh@chbe.gatech.eu, Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, United States
Peter J. Ludovice
Affiliation:
peter.ludovice@chbe.gatech.edu, Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, United States
Cliffod L. Henderson
Affiliation:
cliff.henderson@chbe.gatech.edu, Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, United States
Get access

Abstract

The influence of film thickness and polymer molecular weight on the diffusion coefficient of water in poly(methyl methacrylate) thin films supported on gold coated surfaces has been studied using vapor sorption experiments via quartz crystal microbalance (QCM) methods. Diffusion coefficients for films ranging in thickness from approximately 1 μm to 50 nm were determined. It is observed that the diffusion coefficient of water in PMMA on weakly interacting substrates is a strong function of film thickness, and that the diffusion coefficient decreases drastically as film thickness is reduced below a critical thickness value. Furthermore, it is found that polymer molecular weight also appears to play an important role in determining the diffusion behavior of such polymer thin film systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Perry, M.L.; Fuller, T.F., J. Electrochem. Soc., 149(7), S59S67 (2002).Google Scholar
2. Future trends in microelectronics (editors: Serge, Luryi, Jimmy, Xu, Alex, Zaslavsky) John Wiley & Sonds: New York (1999).Google Scholar
3. Chrisey, D. B.; Pique, A.; McGill, R. A.; Horwitz, J. S.; Ringeisen, B. R.; Bubb, D. M.; Wu, P. K., Chem. Rev., 103(2), 553576 (2003).Google Scholar
4. Koros, W.J.; Zimmerman, C.M. “Transport and barrier properties,” from Comprehensive Desk Reference of Polymer Characterization (Brady, R.F. editor) 680-690 (2003).Google Scholar
5. Ellison, C.J.; Torkelson, J.M., Nature Mater., 21, 695700 (2003).Google Scholar
6. Hubbell, W., Brandt, H., Munir, Z, J. Polym. Sci., Part B: Polym. Phys., 13, 493 (1975).Google Scholar
7. Sacher, E. Susko., J,J Appl. Polym. Sci., 26, 679 (1981).Google Scholar
8. Numata, S., Fujisaki, K., Kinjo, N., Polymer, 28, 2282 (1987).Google Scholar
9. Sykes,A., G. Clair, J. Appl. Polym. Sci., 32, 3725 (1986).Google Scholar
10. Yang, D., Koros, W.J.,Hopfenberg, H.,Stannett, V.,J. Appl. Polym. Sci., 30,1035 (1985).Google Scholar
11. Yang, D.,Koros, W. J.,Hopfenberg, H.,Stannet, V.,J.Appl. Polym. Sci., 31,1619 (1986).Google Scholar
12. Okamoto, K.,Tanihara, N.,Watanabe, H.,Tanaka, K.,Kita, H.,Nakamura, A., Kusuki, Y.,Nakagawa, K.,J. Polym. Sci., Part B: Polym. Phys., 30, 12231231 (1992).Google Scholar
13. Ichikawa, K.,Mori, T.,Kitano, H.,Fukuda, M.,Mochizuki, A.,Tanaka, M.,J.Polym. Sci., Part B: Polym. Phys., 39, 21752182 (2001).Google Scholar
14. Ree, M.,Swanson, S.,Volksen, W., Polymer, 34, 1423 (1993).Google Scholar
15. Jou, J.,Huang, R.,Huang, P.,Shen, W.,J. Appl. Polym. Sci., 43, 857875 (1991).Google Scholar
16. Jou, J.,Huang, P., Polymer, 33, 12181222 (1992).Google Scholar
17. Berger, C.M.,Henderson, C.L., Polymer, 44, 21012108 (2003).Google Scholar
18. Lu, C.,Czanderna, A., Applications of Piezoelectric Quartz Crystal Microbalances, (New York: Elsevier, 1984, chapter 2).Google Scholar
19. Han, H.,Seo, J.,Ree, M.,Pyo, S.,Gryte, C., Polymer, 39(13), 29632972 (1998).Google Scholar
20. Despond, S.,Espuche, E.,Domard, A., J. Polym. Sci., Part B: Polym. Phys., 39, 3114 (2001).Google Scholar
21. Seo, J.,Cho, K.,Han, H., Polym. Degrad. Stab., 74, 133 (2001).Google Scholar
22. Mueller, K.,Koros, W. J.,Wang, Y.,Willson, C. G., Proc. SPIE, 3049, 871 (1997).Google Scholar
23. Hines, A.L.,Maddox, R.N., Mass Transfer: Fundamentals and Applications, (Englewood Cliffs:Prentice-Hall, 1985, chapter 4)Google Scholar
24. Comyn, J., Polymer Permeability, (New York:Elsevier; 1985) p. 7, 345-350.Google Scholar
25. Vieth, W., Diffusion In and Through Polymers: Principles and Applications, (New York:Hanser; 1991) p. 19–47.Google Scholar
26. Singh, L.; Henderson, C.>L.; Ludovice, P. J., Proceedings of SPIE-The International Society for Optical Engineering, 5753(Pt. 2, Advances in Resist Technology and Processing XXII), pp. 12021211, (2005).L.;+Ludovice,+P.+J.,+Proceedings+of+SPIE-The+International+Society+for+Optical+Engineering,+5753(Pt.+2,+Advances+in+Resist+Technology+and+Processing+XXII),+pp.+1202–1211,+(2005).>Google Scholar
27. McCaig, M.S.; Paul, D.R.; Barlow, J.W., Polymer, 41(2), 639648 (1999).Google Scholar