Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T23:14:04.239Z Has data issue: false hasContentIssue false

Sintering and Dielectric Properties of SrTiO3-based Ceramics

Published online by Cambridge University Press:  21 March 2012

Juan Li
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People’s Republic of China. State Key Lab of Silicon Materials, Zhejiang University, Hangzhou, 310027, People’s Republic of China.
Dengren Jin
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People’s Republic of China. State Key Lab of Silicon Materials, Zhejiang University, Hangzhou, 310027, People’s Republic of China.
Lixin Zhou
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People’s Republic of China. State Key Lab of Silicon Materials, Zhejiang University, Hangzhou, 310027, People’s Republic of China.
Jinrong Cheng
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People’s Republic of China.
Get access

Abstract

High dielectric tunability, low dielectric loss tangent and appropriate level of dielectric constant are the basic requirements for applications as electrically tunable dielectric microwave devices. In our experiments, the SrTiO3 green compacts made of the powder mixtures with various particle sizes were infiltrated with a BaTiO3 precursor solution and sintered at different temperatures between 1280 and 1350 ºC for 2 hours and 1350 ºC for 6 hours. The sintering, microstructural and dielectric properties were investigated. Results showed that the relative density of SrTiO3 ceramics could reached 93% when sintered at 1280 ºC for 2 hours. When sintered for 6 hours at 1350 °C, the room temperature dielectric constant of SrTiO3 reaches 900 at a frequency of 1MHz. It has only weak temperature dependence between 100 and 500K. The reason of the low sintering temperature for the dense SrTiO3 ceramics and the effects of sintering scheme on the dielectric properties from 100 K to 500 K are discussed in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tagantsev, A. K., Sherman, V. O., Astafiev, K. F., Venkatesh, J., and Setter, N., J. Electroceram. 11, 5 (2003).Google Scholar
2. Courrèges, S., Zhao, Z. Y., Choi, K., Hunt, A., and Papapolymerou, J., Microwave and Millimeter Wave Technologies from Photonic Bandgap Devices to Antenna and Applications, 185 (2010).Google Scholar
3. Flaviis, F. D., Alexopoulos, N. G., and Stafsudd, O. M., IEEE Trans. Microwave Theory Tech. 45, 963 (1997).Google Scholar
4. Rupprecht, G., Bell, R. O., and Silverman, B. D., Phys. Rev. 123, 97 (1961).Google Scholar
5. Johnson, K. M., J. Appl. Phys. 33, 2826 (1962).Google Scholar
6. Wooldridge, I., Turner, C. W., and Warburton, P. A., IEEE Trans. Appl. Supercond. 9, 3220 (1999).Google Scholar
7. akudo, T., and Unoki, H., Phys. Rev. Lett. 26, 851 (1971).Google Scholar
8. Krupka, J., Geyer, R. G., Kuhn, M., and Hinken, J. H., IEEE Trans. Microwave Theory Tech. 42, 1886 (1994) .Google Scholar
9. Rupprecht, G., and Bell, R. O., Phys. Rev. 125, 1915 (1962).Google Scholar
10. Tkach, A., Vilarinho, P. M., Senos, A. M. R., and Kholkin, A. L., J. Eur. Ceram. Soc. 25, 2769 (2005).Google Scholar
11. Tkach, A., Okhay, O., Vilarinho, P. M., and Kholkin, A. L., J. Phys.: Condens. Matter 20, 415224 (2008).Google Scholar
12. Su, B, and Button, TW, J. Eur. Ceram. Soc., 21, 2777(2001).Google Scholar
13. Xu, H., Jin, D., Wu, W., and Cheng, J., J. Phys. D: Appl. Phys. 42, 065403 (2009).Google Scholar
14. Jiang, W., Gong, X., Chen, Z., and Hu, Y., Ultrason. Sonochem. 14, 208 (2007).Google Scholar
15. Liou, Y. C., Wu, C. T., and Chung, T. C., J. Mater. Sci. 42, 3580 (2007).Google Scholar
16. Kao, C. F., and Yang, W. D., Ceram. Inter. 22, 57 (1996).Google Scholar
17. Zhang, H., Yao, X., and Zhang, L., J. Am. Ceram. Soc. 90, 2333 (2007).Google Scholar
18. He, S., Li, Y., Liu, X., Tao, B., Li, D., and Lu, Q., Thin Solid Films 478, 261 (2005).Google Scholar
19. Hayward, S. A., and Salje, E. K. H., Phase Transitions 68, 501 (1999).Google Scholar
20. Vendik, O. G., Hollmann, E. K., Kozyrev, A. B., and Prudan, A. M., J. Appl. Supercond. 12, 325(1999).Google Scholar