Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T06:08:09.107Z Has data issue: false hasContentIssue false

Single crystallization of Ba8AlxSi46-x clathrate by using the flux Czochralski method

Published online by Cambridge University Press:  07 July 2011

Yusuke Nakakohara*
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 744Motooka, Fukuoka, 819-0395, Japan
Naoki Mugita
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 744Motooka, Fukuoka, 819-0395, Japan
Yuya Nagatomo
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 744Motooka, Fukuoka, 819-0395, Japan
Makoto Saisho
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 744Motooka, Fukuoka, 819-0395, Japan
Teruaki Motooka
Affiliation:
Cleanroom Laboratory Facility, Kyushu University8-7Yayoigaoka, Tosu, Saga 841-0005, Japan
Ryo Teranishi
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 744Motooka, Fukuoka, 819-0395, Japan
Shinji Munetoh
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 744Motooka, Fukuoka, 819-0395, Japan
Get access

Abstract

We have synthesized single crystalline Ba8AlxSix-46 clathrates by using the flux Czochralski (CZ) method with Al-rich melt. The specific electric resistivity, the Seebeck coefficient and the power factor of single crystalline Ba8Al14Si32 were 0.73 mΩcm,70.0μV/K and 6.8×10-4 V2/K2Ωm, respectively. These values are higher than that of single crystalline Ba8Al12Si34 clathrate because of the reduced carrier concentration. It is indicated that Al contents and the carrier concentration of single crystalline Ba8AlxSi46-x can be controlled by using the flux Czochralski method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wright, D.A. 1958 Nature. 181 834 Google Scholar
[2] Ocio, M. and Albany, H. J. 1969 Phys. Lett. A 30 169 Google Scholar
[3] Heller, M. W., Nasby, R. D., and Jhonson, R. T. 1976 J. Appl. Phys. 47 4113 Google Scholar
[4] Nolas, G. S., Cohn, J. L., Slack, G. A., Schujman, S. B. 1998 Appl. Phys. Lett. 73 178 Google Scholar
[5] Nolas, G. S. 1999 Mat. Res. Soc. Symp. Proc. 545 435 Google Scholar
[6] Schujman, S. B., Nolas, G. S., Young, R. A., Lind, C., Wilkinson, A. P., Slack, G. A., Patschke, R., Kantzidis, M. G., Ulutagay, M., and Hwu, S. J. 2000 J. Appl. Phys. 87 1529 Google Scholar
[7] Slack, G. A. 1997 Mat. Res. Soc. Symp. Proc. 478 47 Google Scholar
[8] Kishimoto, K., Ikeda, N., Akai, K., and Koyanagi, T. 2008 Appl. Phys. Exp. 1, 031201 Google Scholar
[9] Okamoto, N. L., Kishida, K., Tanaka, K., and Inui, H. 2007 J. Appl. Phys. 101 113525 Google Scholar
[10] Uemura, T., Akai, K., Koga, K., Tanaka, T., Kurisu, H., Yamamoto, S., Kishimoto, K., Koyanagi, T., and Matsuura, M. 2008 J. Appl. Phys. 104 013702 Google Scholar
[11] Nenghabi, E. N. and Myles, C. W.,2008 J. Phys. Condens. Matter 20 415214 Google Scholar
[12] Mugita, N., Nakakohara, Y., Teranishi, R., and Munetoh, S.(to be published) 4 Google Scholar
[13] Condron, C.L; Porter, R.; Guo, T.; Kauzlarich, S.M. Inorg. Chem. 2005, 44, 9185.Google Scholar