Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:43:05.398Z Has data issue: false hasContentIssue false

Simulation of the Growth of Heterostructures

Published online by Cambridge University Press:  10 February 2011

J.H. Harding
Affiliation:
Dept. Physics & Astronomy, University College, London, United Kingdom
A.H. Harker
Affiliation:
Dept. Physics & Astronomy, University College, London, United Kingdom
Get access

Abstract

The production and morphology of hetero-structures presents problems at a variety of length-scales. A common problem is the production and accommodation of stresses in the film due to mis-match. We shall first discuss examples of atomistic nucleation and growth at interfaces and the use of atomistic simulations to obtain parameters for rate-theory models of cluster and film growth. We shall then consider the effect of stress on growing films. In strained-layer semi-conductor systems, for example, the growth of small islands gives rise to stress distributions which differ strongly from those in continuous layers. Interesting strain effects are also observed in ceramics. We will discuss the relationship between stress and the growth and morphology of films, where effective medium models may be used to derive effective bulk properties for films with imperfections such as porosity and cracks.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jain, S.C., Germanium-Silicon Strained Layers and Heterostructures Academic Press, Boston 1994.Google Scholar
2 Priester, C. and Lannoo, M., Current Opinion in Solid State and Mater. Sci. 2 p. 716 (1998).Google Scholar
3 Veirman, A.E.M. de, Timmers, J., Hakkens, F.J.G., Cillessen, J.F.M. and Wolf, R.M., Philips J. Res. 47 p. 185 (1993).Google Scholar
4 Dong, L., Smith, R.W. and Srolovitz, D.J., J. Appl. Phys. 80 p. 5682 (1996).Google Scholar
5 Jain, S.C., Gosling, T.J., Willis, J.R., Bullough, R. and Balk, P., Phil. Mag. A65 p. 1151 (1992).Google Scholar
6 Speck, J.S. and Pompe, W., J. Appl. Phys 76 p. 466 (1994); J.S. Speck, A. Seifert and W. Pompe, J. Appl. Phys 76 p. 477 (1994).Google Scholar
7 Jain, S.C., Harker, A.H. and Cowley, R.A., Phil. Mag. A75 p. 1461 (1997).Google Scholar
8 Venables, J.A., Spiller, G.D.T. and Hanbiicken, M. M, Rep. Prog. Phys. 47 p. 399 (1984).Google Scholar
9 Venables, J.A., Phys. Rev. B 36 p. 4153 (1987).Google Scholar
10 Harding, J.H., Venables, J.A. and Stoneham, A.M., Phys. Rev. B (in press) 1998.Google Scholar
11 Venables, J.A., Surf. Sci. 299–300 p. 798 (1994); for CaF2 results see K.R. Heim, S.T. Coyle, G.G. Hembree, J.A. Venables and M.R. Scheinfein, J. Appl. Phys. 80 p. 1161 (1996).Google Scholar
12 Gates, A.D. and Robins, J.L., Appl Surf Sci 48–9 p. 154 (1991).Google Scholar
13 Harrach, H. von, Thin Solid Films 22 p. 30 (1974).Google Scholar
14 Chan, E.M., Buckingham, M.J. and Robins, J.L., Surf. Sci. 67 p. 285 (1977).Google Scholar
15 Papajova, D., Nemeth, S., Hagston, W.E., Sitter, H. and Veseley, M., Thin Solid Films, 267 p. 47 (1995).Google Scholar
16 Sayle, T.X.T., Catlow, C.R.A., Sayle, D.C., Parker, S.C. and Harding, J.H., Phil. Mag. A68 p. 565 (1993).Google Scholar
17 Sayle, D.C., Parker, S.C. and Harding, J.H., J. Mater. Chem. 4 p. 1883 (1994).Google Scholar
18 Sutton, A.P. and Balluffi, R.W. Interfaces in Crystalline Solids Oxford U.P., Oxford, 1995.Google Scholar
19 Finnis, M.W., J. Phys. Cond. Mater. 8 p. 5811 (1996).Google Scholar
20 Matthews, J.W., Jackson, D.C. and Chambers, A., Thin Solid Films 26 p. 129 (1975).Google Scholar
21 Jain, S.C., Harker, A.H., Atkinson, A. and Pinardi, K., J. Appl. Phys. 78 p. 1630 (1995).Google Scholar
22 Jain, S.C., Dietrich, B., Richter, H., Atkinson, A. and Harker, A.H., Phys. Rev. B52 p. 6247 (1995).Google Scholar
23 Kisielowski, C., Kruger, J., Ruvimov, S., Suski, T., Ager, J.W., Jones, E., LilientalWeber, Z., Rubin, M., Weber, E.R., Bremser, M.D. and Davis, R.F., Phys. Rev. B54 p. 17745 (1996).Google Scholar
24 Barabasi, A.L. and Stanley, H.E., Practal concepts in surface growth Cambridge U.P. Cambridge, 1995.Google Scholar
25 Cirolini, S., Marchese, M., Jacucci, G., Harding, J.H. and Mulheran, P.A., Materials Design and Technology (ed. Kozik, T.J.) 62 ASME 1994.Google Scholar
26 Batchelor, G.K., Ann. Rev. Fluid. Mech. 6 p. 227 (1991).Google Scholar
27 Maxwell, J.C. Treatise on Electricity and Magnetism 2nd Edition, Clarendon Press 1881, Vol 1 p. 400.Google Scholar
28 Lorenz, L., Ann. Phys. Lpz. 11 p. 70 (1880).Google Scholar
29 Rayleigh, Lord (Strutt, J.W.), Phil. Mag. 34 p. 481 (1882).Google Scholar
30 Bruggeman, D.A.G., Ann. der Phys. 24 p. 636 (1935).Google Scholar
31 Polder, D. and van Santen, J.H., Physica (Utrecht) 12 p. 257 (1946).Google Scholar
32 Budiansky, B., J. Mech. Phys. Sol. 13 p. 223 (1965).Google Scholar
33 Wu, T.T., Int. J Solids Struct. 2 p. 1 (1966).Google Scholar
34 Eshelby, J.D., Proc. Roy. Soc. A252 p. 561 (1957).Google Scholar
35 Clyne, T.W. and Withers, P.J., An Introduction to metal matrix composites Cambridge U.P., Cambridge, 1993.Google Scholar
36 Mura, T., Micromechanics of defects in solids Nijhoff, The Hague, 1987.Google Scholar
37 Ferrari, M., Compos. Eng. 4 p. 37 (1994).Google Scholar
38 Hill, R., J Mech. Phys. Sol. 11 p. 357 (1963).Google Scholar
39 Hashin, Z., J Mech. Phys. Sol. 36 p. 719 (1988).Google Scholar
40 Pedersen, O.B. and Withers, P.J., Phil. Mag. A65 p. 1217 (1992).Google Scholar