Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T22:29:11.756Z Has data issue: false hasContentIssue false

Simulation of Positron Characteristics in Nanocryartalline Materials

Published online by Cambridge University Press:  14 March 2011

Jan Kuriplach
Affiliation:
Department of Low Temperature Physics, Charles University, V Holešovičkách 2, CZ-18000 Prague 8, Czech Republic
Steven Van Petegem
Affiliation:
Department of Subatomic and Radiation Physics, Ghent University, Proeftuinstraat 86, B-9000 Ghent, Belgium
Danny segers
Affiliation:
Department of Subatomic and Radiation Physics, Ghent University, Proeftuinstraat 86, B-9000 Ghent, Belgium
Charles Dauwe
Affiliation:
Department of Subatomic and Radiation Physics, Ghent University, Proeftuinstraat 86, B-9000 Ghent, Belgium
Marc Hou
Affiliation:
Physics of Irradiated Solids, Free University of Brussels, Bd du Triomphe, B-1050 Grussels, Belgium
Eugenij E. Zhrukin
Affiliation:
Departement of Experimental Nuclear Physics, St. Petersburg State Technical University, Polytekhnicheskaya 29, 195251, St. Petersburg, Russia
Helena Van Swygenhoven
Affiliation:
Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
Alvaro L. Morales
Affiliation:
Departement of Physics, University of Antioquia, A.A. 1226, Medellin, Colombia
Get access

Abstract

The theoretical calculations of the position response to different types of defects can be very helpful in order to interpret properly positron measurements. In this contribution a new computational technique to determine position properties in nanocrystalline materials is presented. In such calculations we employ the realistic models of n-materials obtained using molecular dynamics. The new technique is based on the so-called atomic superposition method where atomic densities are superimposed in a selected region of the model (virtual) sample to approxiamte the electron density of the system. We study the virtual samples of n-Cu, n-NiAl, and n-Ni3Al, for which we calculate position lifetime and position binding energies corresponding to defects located in selected regions of the samples. The regions of interest for position calculations comprise grain boundaries inculding triple points, nano-voids, and bulk-like regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Positron Spectroscopy of Solids, edited by Dupasquier, A. and Mills, A.P. Jr., (IOS Press, Amsterdam, 1995).Google Scholar
2. Schaefer, H.E. and Würschum, R., Phys. Lett. A 119, 370 (1987).Google Scholar
3. Zhurkin, E.E., Hou, M., Swygenhoven, H. Van, Pauwels, B., Yandouzi, M. Schryvers, D., Tendeloo, G. Van, Lievens, P., Lievens, G., Verschoren, G., Kuruplach, J., Petegem, S. Van, Segers, D., and Dauwe, C., this proceedings.Google Scholar
4. Puska, M.J. and Nieminen, R.M., J. Phys. F: Metal Phys. 13, 333 (1983); A.P.Seitsonen, M.J.Puska and R.M.Nieminen, J. Phys. F: Metal Phys. B 51, 14057 (1995).Google Scholar
5. Puska, M.J. and Nieminen, R.M., Rev. Mod. Phys. 66, 841 (1994).Google Scholar
6. Teter, M.P., Payne, M.C., and Allan, D.C., Phys. Rev. B 40, 12255 (1989).Google Scholar
7. Boroński, E. and Niewan, R.M., Phys. Rev. B 34, 3820 (1986).Google Scholar
8. Kuriplach, J., Petegem, S. Van, Hou, M., Zhurkin, E.E., Swygenhoven, H. Van, Torre, F. Dalla, Tendeloo, G.Van, Yandouzi, M., Schryvers, D., Schyvers, D., Segers, D., Morales, A.L., Ettaoussi, S., and Dauwe, C., accepted for publication in Mater. Sci. Forum (2001).Google Scholar
9. Petegem, S. Van, Segers, D., , Dauwe, Tore, F. Dalla, Swygenhoven, H. Van, Yandouzi, M., Schryvers, D., Tendeloo, G. Van, Kuriplach, J. Hou, M., and Zhurkin, E.E., this proceedings.Google Scholar