Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:10:56.269Z Has data issue: false hasContentIssue false

Simulating Oxide Interfaces and Heterointerfaces

Published online by Cambridge University Press:  11 February 2011

John H. Harding
Affiliation:
Department of Physics and Astronomy, University College London, Gower St, London WC1E 6BT, U.K.
Dorothy M. Duffy
Affiliation:
Department of Physics and Astronomy, University College London, Gower St, London WC1E 6BT, U.K.
Duncan J. Harris
Affiliation:
Department of Physics and Astronomy, University College London, Gower St, London WC1E 6BT, U.K.
Get access

Abstract

Interfaces can be considered at a variety of length scales. All interfaces except grain boundaries are dielectric interfaces. In many cases, the geometric constraints of matching two lattices must be considered, together with the misfit strains that are often present. Continuum mechanics is useful for tackling such problems. In many cases, however, the local ordering of ions must also be considered. Atomistic simulation is therefore necessary, together with the problems associated with large length scales and long time scales. We discuss a number of examples to illustrate the issues involved and the compromises between different approaches that must be made.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harding, J. H., Harris, D. J. and Parker, S. C., Phys. Rev. B 60 2740 (1999).Google Scholar
2. Dhalenne, G., Déchamps, M. and Revcolevski, A., J. Amer. Ceram. Soc. 65 C11 (1982)Google Scholar
3. Zhukovskii, Y. F., Kotomin, E. A., Jacobs, P.W.M., Stoneham, A. M. and Harding, J.H., J. Phys. Cond. Mat. 12 55 (2000).Google Scholar
4. Catlow, C. R. A. and Stoneham, A. M., J. Phys. C 16 4321 (1983).Google Scholar
5. Rickman, J. M. and Srolovitz, D. J., Surf. Sci. 284 211 (1993).Google Scholar
6. Chambers, S. A., Surf. Sci. Repts. 39 105 (2000)Google Scholar
7. Nörenberg, H. and Harding, J.H., Surf. Sci. 477 17 (2001).Google Scholar
8. Noguera, C., J. Phys. Cond. Mat. 12 R367 (2000)Google Scholar
9. Schnitker, J. and Srolovitz, D. J., Model. Simul. Mater. Sci. Eng. 6 153 (1998).Google Scholar
10. Jain, S. C., Harker, A. H. and Cowley, R.A., Philos. Mag. A 75 1461 (1997).Google Scholar
11. Tasker, P. W., Philos. Mag. A 39 119 (1979).Google Scholar
12. Gay, D. H. and Rohl, A. L., J. Chem. Soc. (Faraday II) 91 935 (1995).Google Scholar
13. Watson, G.W., Kelsey, E. T., de Leeuw, N. H., Harris, D. J. and Parker, S. C., J. Chem Soc (Faraday Trans) 92 433 (1996)Google Scholar
14. Taylor, M. B., Barrera, G. D., Allan, N. L., Barron, T. H. K. and Mackrodt, W. C., Com. Phys. Commun. 109 135 (1998)Google Scholar
15. Pugh, S. and Gillan, M. J. Surf. Sci. 320 331 (1994)Google Scholar
16. Doll, J. D., J. Chem. Phys. 73 2760 (1980) but see alsoGoogle Scholar
Marcelin, R., Ann. Phys. 3 120 (1915).Google Scholar
17. Vineyard, G. H., J. Phys. Chem. Sol. 3 121 (1957).Google Scholar
18. Jónsson, H., Ann. Rev. Phys. Chem. 51623 (2000)Google Scholar
19. Voter, A. F., Phys. Rev. Lett. 78 3908 (1997)Google Scholar
20. Sanz-Navarro, C. F. and Smith, R., Comp. Phys. Commun. 137 206 (2001).Google Scholar
21. Barabási, A. L. and Stanley, H. E., Fractal concepts in surface growth (Cambridge 1995).Google Scholar
22. Venables, J. A., Introduction to Surface and Thin Film Processes (Cambridge, 2000).Google Scholar
23. Venables, J. A. and Harding, J. H., J. Cryst. Growth, 211 27 (2000).Google Scholar
24. Mann, S., Biomineralisation (Oxford 2001)Google Scholar
25. Mutaftschiev, B., Chapter 9 in The atomistic nature of crystal growth (Springer 2001).Google Scholar
26. Smith, W. and Forester, T.R., J. Molec. Graph. 14 136 (1996).Google Scholar
27. Duffy, D.M. and Harding, J. H., J. Mater. Chem. in press (advance copy on journal website).Google Scholar
28. Loste, E., Morphological control of calcium carbonate (PhD thesis, Univ. of London 2002).Google Scholar
29. Duffy, D. M., J. Phys. C 19 4393 (1986).Google Scholar
30. Karakasidis, T. and Meyer, M., Phys. Rev. B 55 13853 (1997).Google Scholar
31. Mishin, Y., Philos. Mag. A 72 1589 (1995).Google Scholar
32. Discussion and references in Harding, J. H., Interface Science 11 81 (2003)Google Scholar
33. Atkinson, A. and Taylor, R. I., J. Phys. Chem. Solids 47 315 (1986).Google Scholar
34. Sayle, D. C., Catlow, C. R. A., Harding, J. H., Healy, M. J. F., Maicaneanu, S. A., Parker, S. C., Slater, B. and Watson, G. W., J. Mater. 10 1315 (2000).Google Scholar