Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T15:24:12.293Z Has data issue: false hasContentIssue false

Silicon Nanowires Obtained by Low Temperature Plasma-Based Chemical Vapor Deposition.

Published online by Cambridge University Press:  18 May 2012

R. A. Puglisi*
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi, Strada Ottava 5 Zona Industriale, 95121, Catania, Italy
G. Mannino
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi, Strada Ottava 5 Zona Industriale, 95121, Catania, Italy
S. Scalese
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi, Strada Ottava 5 Zona Industriale, 95121, Catania, Italy
A. La Magna
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi, Strada Ottava 5 Zona Industriale, 95121, Catania, Italy
V. Privitera
Affiliation:
MATIS-IMM-CNR, Via Santa Sofia 64, Catania, Italy
*
*Corresponding author: Email: rosaria.puglisi@imm.cnr.it, Tel.: +39 0955968237, Fax: + 39 0955968312
Get access

Abstract

Silicon Nanowires (Si-NWs) are obtained by vapor-liquid-solid growth using an inductively coupled chemical vapor deposition system which works at temperatures lower than 400 °C. Gold nanodots are used as metal catalyst. The selective growth of Si-NWs on the gold nanodots is obtained by controlling the contribution coming from the uncatalyzed growth on the bare Si substrate. In this way the final NW length can be controlled, and it is not influenced by the thickness of the uncatalyzed layer. The important parameter ruling the NW growth is found to be the plasma power which governs the dissociation of the Si precursor gas. Final NW lengths of 1 μm are obtained at temperatures of 380 °C with a thickness of uncatalyzed layer equal to zero. Also the NW density is addressed in this work and it is optimised by increasing the gold equivalent thickness. The NW density is increased from 2.9×108 to 1.3×1010 cm-2, when the gold equivalent thickness passes from 1.8 nm to 2.2 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lewis, N. S., Science 315, 798 (2007).Google Scholar
[2] Garnett, E. C., Brongersma, M. L., Cui, Y., McGehee, M. D., Ann Rev. Mater. Res. 41, 269 (2011).Google Scholar
[3] Fontcuberta i Morral, A., Arbiol, J., Prades, J. D., Cirera, A., and Morante, J. R., Adv. Mater. 19, 1347 (2007).Google Scholar
[4] Kayes, B. M., Atwater, H. A., Lewis, N. S., J. Appl. Phys. 97 (11) 114302 (2005).Google Scholar
[5] Perraud, S., Poncet, S., Noël, S., Levis, M., Faucherand, P., Rouvière, E., Thony, P., Jaussaud, C., and Delsol, R., Sol. Energy Mater. Sol. Cells 93, 1568 (2009).Google Scholar
[6] Wagner, R. S., Ellis, W. C., Appl. Phys. Letters 4, 89 (1964).Google Scholar
[7] Givargizov, E.I., J. Cryst. Growth 31, 20 (1975).Google Scholar
[8] Tian, B.Z., Zheng, X. L., Kempa, T. J., Fang, Y., Yu, N. F., Yu, G. H., Huang, J. L., Lieber, C. M., Nature 449 (7164) 885–U8 (2007).Google Scholar
[9] Suzuki, H., Araki, H., Tosa, M., Noda, T., Mat. Trans. 48 (8) 2202 (2007).Google Scholar
[10] Irrera, A., Pecora, E., and Priolo, F., Nanotechnology 20, 135601 (2009).Google Scholar
[11] Monasterio, M., Rodriguez, A., Rodriguez, T., and Ballesteros, C., presented at 2011 MRS Fall Meeting, Boston, MA, 2011.Google Scholar
[12] Zardo, I., Yu, L., Conesa-Boj, S., Estradè, S., Alet, P. J., Rossler, J., Frimmer, M., Roca i Cabarrocas, P., Peirò, F., Arbiol, J., Morante, J. R., and Fontcuberta i Morral, A, Nanotechnology 20, 155602 (2009).Google Scholar
[13] Zardo, I., Conesa-Boj, S., Estradé, S., Yu, L., Peiro, F., Roca i Cabarrocas, P., Morante, J.R., Arbiol, J., and Fontcuberta i Morral, A., Appl. Phys. A 100, 287 (2010).Google Scholar
[14] Qin, Y., Li, F., Liu, D., Yan, H., Wang, J., and He, D., Materials Letters 65, 1117 (2011).Google Scholar
[15]Suppression of the 2D growth during the synthesis of Si nanowires by Induct ively Coupled Chemical Vapor Deposition”, R. A. Puglisi, G. Mannino, S. Scalese, A. La Magna, V. Privitera, submitted to APL.Google Scholar
[16] Garozzo, C., Puglisi, R. A., Bongiorno, C., Scalese, S., Rimini, E., and Lombardo, S., J. Mater. Res. 26(2), 240 (2011).Google Scholar