No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We demonstrate a micron-size planar silicon photonic device that is able to detect low concentrations of metal nano-particles approaching single particle detection. This sensitivity is achieved by using strong light confining structures that enhance the extinction cross-section of metal nano-particles by orders of magnitude. Structures were fabricated and measurements of the transmission spectra of the devices demonstrate the detection of 10 nm diameter gold particles resting on the device with a density of fewer than 2 particles per 104 nm2 (the area of the sensing region surface). Using such a device, in a fluidic platform, one could detect the presence of a single metal nano-particle specifically bound to various analytes, enabling ultrasensitive detection of analytes including DNA, RNA, proteins, and antigens.