Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:28:30.793Z Has data issue: false hasContentIssue false

Silicate interface formation during the deposition of Y2O3 on Si

Published online by Cambridge University Press:  01 February 2011

C. Durand
Affiliation:
Laboratoire des Technologies de la Microélectronique (LTM/CNRS), 17 avenue des Martyrs (CEA-LETI), 38054 Grenoble Cedex 9, France.
C. Vallée
Affiliation:
Laboratoire des Technologies de la Microélectronique (LTM/CNRS), 17 avenue des Martyrs (CEA-LETI), 38054 Grenoble Cedex 9, France.
C. Dubourdieu
Affiliation:
Laboratoire des Matériaux et du Génie Physique, UMR-CNRS 5628, ENSPG, BP 46, 38402, Saint Martin d'Hères cedex, France.
M. Bonvalot
Affiliation:
Laboratoire des Technologies de la Microélectronique (LTM/CNRS), 17 avenue des Martyrs (CEA-LETI), 38054 Grenoble Cedex 9, France.
E. Gautier
Affiliation:
Institut des Matériaux de Nantes (IMN), 2 rue de la Houssinière, BP 32229, 44322 Nantes cedex, France
O. Joubert
Affiliation:
Laboratoire des Technologies de la Microélectronique (LTM/CNRS), 17 avenue des Martyrs (CEA-LETI), 38054 Grenoble Cedex 9, France.
Get access

Abstract

The interface behaviour during PE-MOCVD deposition of Y2O3 thin films on Si/SiO2 (8 Å) substrates has been investigated by XPS, TEM and OES analysis. The deposition process involves the sequential injection of MO precursors into the CVD chamber and is assisted by an O2 plasma. The injection frequency greatly influences the interface behaviour in terms of thickness and composition. The O2 plasma and the solvent also greatly affect substrate oxidation, and subsequently interface formation during deposition. Several mechanisms are discussed to account for substrate oxidation in view of a careful control of interface formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rayner, G.B. Jr, Kang, D., and Lucovsky, G., J. Vac. Sci. Technol. B 21, 1783 (2003)Google Scholar
2. Rayner, G.B. Jr, Therrien, R., and Lucovsky, G., Mater. Res. Soc. Symp. Proc. 611, c13.1 (2001)Google Scholar
3. Maria, J.P., Wicaksana, D., Kingon, A.I., Busch, B., Schulte, H., Garfunkel, E., and Gustafsson, T., J. Appl. Phys. 90, 3476 (2001)Google Scholar
4. Gurvitch, M., Manchada, L., and Gibson, J.M., Appl. Phys. Lett. 51, 919 (1987)Google Scholar
5. Copel, M., Appl. Phys. Lett. 82, 1580 (2003)Google Scholar
6. Copel, M., Cartier, E., Narayanan, V., Reuter, M.C., Guha, S., and Bojarczuk, N., Appl. Phys. Lett. 81, 4227 (2002)Google Scholar
7. Durand, C., Vallée, C., Loup, V., Salicio, O., Dubourdieu, C., Blonkowski, S., Bonvalot, M., and Joubert, O., submitted to J. Vac. Sci. Technol. Google Scholar
8. Durand, C., Dubourdieu, C., Vallée, C., Gauthier, E., Loup, V., Bonvalot, M., and Joubert, O., to be publishedGoogle Scholar
9. Chambers, J.J., and Parsons, G.N., J. Appl. Phys. 90, 918 (2001)Google Scholar
10. Kitajima, M., Kamioka, I., Nakamura, K.G., and Hishita, S., Phys. Rev. B 53, 3993 (1996)Google Scholar
11. Joseph, J., Hu, Y.Z., and Irene, E.A., J. Vac. Sci. Technol. B 10, 611 (1992)Google Scholar
12. Carl, D.A., Hess, D.W., Lieberman, M.A., Nguyen, T.D., and Gronsky, R., J. Appl. Phys. 70, 3301 (1991)Google Scholar
13. Matsuo, S., Yamamoto, M., Sadoh, T., Tsurushima, T., Gao, D.W., Furukawa, K., and Nakashima, H., J. Appl. Phys. 88, 1664 (2000)Google Scholar
14. Kaspar, T., Tuan, A., Tonkyn, R., Hess, W.P., Rogers, J.W. Jr, and Ono, Y., J. Vac. Sci. Technol. B 21, 895 (2003)Google Scholar
15. Ueno, T., Morioka, A., Chikamura, S., and Iwasaki, Y., Jpn. J. Appl. Phys. Part 2 39, L327 (2000)Google Scholar
16. Lu, Z. H., McCaffrey, J. P., Brar, B., Wilk, G. D., Wallace, R. M., Feldman, L. C. and Tay, S. P., Appl. Phys. Lett. 71 (19), 1997 Google Scholar