Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T14:11:44.047Z Has data issue: false hasContentIssue false

Sialons and Silicon Nitrides; Microstructural Design and Performance

Published online by Cambridge University Press:  25 February 2011

M.H. Lewis*
Affiliation:
Centre for Advanced Materials Technology, University of Warwick, Coventry, CV4 7AL, U.K.
Get access

Abstract

survey is presented of developments in silicon nitride and sialon ceramic microstructures designed for application in differing temperature regimes.

For low temperature (< 1000°C) application, pressureless-sinterable sialons with moderate (10-15%) intergranular glass, anisotropic β′ grains and high values of MOR and Kc (1 GPa and 6-10MPa| m respectively) are preferred.

Improved hardness and high temperature capability may be achieved by tailoring intergranularp hases for crystallisation and further enhanced by the introduction of mixed α′/β′ Sialon microstructures. Examples are given of microstructural evolution in β′- Y3Al5O12(garnet), β′-Nd3Si3Al3O12N2 and α′/β′/garnet ceramics and a comparison of their mechanical behaviour.

Novel Sialon ceramics containing dispersed transition metal compounds (TiN, TiB2) may be formed by in-situ redox reaction, utilising the α′ Sialon phase as an oxygen receptor. The dispersed phase may enhance hardness and toughness and confer electro-discharge machinability.

Oxidation instability of Sialon compositions dictates the use of diphasic Si3N4/M2Si2O7 microstructures for application above 1300°C. The thermal cycle during pressurised sintering of these non-sialon compositions is critical in avoiding crystallisation of mixed polymorphs of the intergranular disilicate, with consequent microcracking.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jack, K.H., J.Mat.Sci. II, 1135 (1976)Google Scholar
2. Dupree, R., Lewis, M.H., Leng-Ward, G. and Williams, D.S., J.Mat.Sci.Lett. 4, 393 1985).Google Scholar
3. Dupree, R., Lewis, M.H. and Smith, M.E., J.Appl.Cryst. 21, 109 (1988).Google Scholar
4. Smith, M.E., J.Phys.Chem., 96, 1444 (1992).Google Scholar
5. Lumby, R.J., North, B. and Taylor, A.J., Special Ceramics 6, 321, ed. Popper, P., (Brit.Ceram.Res.Assoc. 1974).Google Scholar
6. Lewis, M.H., Powell, B.D., Drew, P., Lumby, R.J., North, B. and Taylor, A.J., J.Mat.Sci. 12, 61 (1977).Google Scholar
7. Karunaratne, B.S.B. and Lewis, M.H., J.Mat.Sci. 15, 449 (1980).Google Scholar
8. Karanaratne, B.S.B. and Lewis, M.H., J.Mat.Sci. 15, 1781 (1980).Google Scholar
9. Lewis, M.H. and Karunaratne, B.S.B., ‘Fracture Mechanics for Ceramics, Rocks and Concrete’, 13, ed. Frieman, S. and Fuller, E. (ASTM, STP745 Philadelphia 1981).Google Scholar
10. Lewis, M.H., Bhatti, A.R., Lumby, R.J. and North, B., J.Mat.Sci 15, 103 (1980).Google Scholar
11. Lewis, M.H., Leng-Ward, G., Winder, S.M. and Lumby, R.J., Deformation of Ceramics II, 605, eds. Tressler, R.E. & Bradt, R.C. (Plenum Press 1984).Google Scholar
12. Lewis, M.H., Leng-Ward, G. and Jasper, C., Ceramic Transactions 1; Ceramic Powder Science, 1019, ed., Fuller, E.R. and Hausner, H., (Am.Cer.Soc., Ohio 1988).Google Scholar
13. Fernie, J., Leng-Ward, G. and Lewis, M.H., Materials Letters 9, 29 (1989).Google Scholar
14. Lewis, M.H., Mason, S. and Szweda, A., Non-Oxide Technical and Engineering Ceramics, 175, ed. Hampshire, S. (Elsevier Applied Science 1986).Google Scholar
15. Jasper, C., Ph.D. Thesis, University of Warwick 1990.Google Scholar
16. Lewis, M.H., Karunaratne, B.S.B., Meredith, J. and Pickering, C., ‘Creep and Fracture of Engineering Materials and Structures’, 365, ed. Wilshire, B. and Owen, D.R., (Pineridge Press, U.K., 1981).Google Scholar
17. Hampshire, S., Park, H.K., Thompson, D.P. and Jack, K.H., Nature 274, 280 (1977).Google Scholar
18. Lewis, M.H., Fung, R. and Taplin, D.M.R., J.Mat.Sci. 16, 3437 (1981).Google Scholar
19. Jasper, C.A. and Lewis, M.H., ‘Ceramic Materials and Components for Engines’, 424, ed. Carlsson, R., Johansson, T. and Kahlman, L., (Elsevier Appl. Science, 1992).Google Scholar
20. Lewis, M.H. and Lumby, R.J., Powder Metall. 26 73, (1983).Google Scholar
21. Hampshire, S., Song, Y-J, O'Sullivan, D. and Gunay, V., ‘Ceramic Materials and Components for Engines’, 707, ed. Carlsson, R., Johansson, T. and Kahlman, L. (Elsevier Appl. Science, 1992).Google Scholar
22. Ketchion, S.M., Leng-Ward, G. and Lewis, M.H., ibid., 609.Google Scholar
23. Hong, F., Lumby, R.J. and Lewis, M.H., J. European Ceram.Soc., in press.Google Scholar
24. Hong, F. and Lewis, M.H., Ceram.Eng. and Sci. Proceedings 14, (in press., Am. Ceram.Soc., 1993).Google Scholar
25. Tuersley, I.P., Leng-Ward, G. and Lewis, M.H., Ceram. Mat. and Components for Engines, 856, ed. Tennery, V.J. (Am.Ceram.Soc., 1988).Google Scholar
26. Tuersley, I.P, Leng-Ward, G. and Lewis, M.H., Advanced Engineering with Ceramics, 231, ed Morrell, R. (Inst. of Ceramics 1990).Google Scholar
27. Yeckley, R.L. and Sieben, K.N., Ceram.Mat. and Components for Engines, 751, ed. Tennery, V.J. (Am.Ceram.Soc. 1988).Google Scholar
28. Liddell, K. and Thompson, D.P., Br.Ceram. Trans. J., 85 17 (1986)Google Scholar
29. Leng-Ward, G. and Lewis, M.H., in preparation for publication (from EURAM contract MA1E/0099/C)Google Scholar
30. Leng-Ward, G. and Lewis, M.H., ‘Glasses and Glass-Ceramics’, 106, ed. Lewis, M.H. (Chapman and Hall 1988).Google Scholar
31.Razzell, A.G. and Lewis, M.H., Ceram. Eng. and Science Proc., 12, 1304, (Am.Ceram.Soc., Ohio 1991).Google Scholar