Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T19:04:24.915Z Has data issue: false hasContentIssue false

Self-Oscillating Polymer Gels as Novel Smart Materials

Published online by Cambridge University Press:  27 February 2012

Ryo Yoshida*
Affiliation:
Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Get access

Abstract

As a novel biomimetic polymer gel, we have been studying polymer gels with an autonomous self-oscillating function, since firstly reported in 1996. For developing the polymer gels, we utilized oscillating chemical reaction, called the Belousov-Zhabotinsky (BZ) reaction, which is recognized as a chemical model for understanding several autonomous phenomena in biological systems. The self-oscillating polymer gel is composed of a poly(N-isopropylacrylamide) network in which the metal catalyst for the BZ reaction is covalently immobilized. Under the coexistence of the reactants, the polymer undergoes spontaneous swelling-deswelling changes (in the case of gel) or cyclic soluble-insoluble changes (in the case of an uncrosslinked polymer) without any on-off switching of external stimuli. Several kinds of functional material systems utilizing self-oscillating polymers and gels such as biomimetic actuators, mass transport surface, etc. are expected. Here recent progress on self-oscillating polymers and gels and the design of functional material systems are summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Field, R.J. and Burger, M. (Eds.), Oscillations and Traveling Waves in Chemical Systems, John Wiley & Sons, New York (1985).Google Scholar
2) Epstein, I.R. and Pojman, J.A., An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, Oxford University Press, New York (1998).Google Scholar
3) Yoshida, R., Takahashi, T., Yamaguchi, T. and Ichijo, H., J. Am. Chem. Soc., 118, 5134 (1996).Google Scholar
4) Yoshida, R., Adv. Mater., 22, 3463 (2010).Google Scholar
5) Yoshida, R., Colloid Polym. Sci., 289, 475 (2011).Google Scholar
6) Yoshida, R., Sakai, T., Hara, Y., Maeda, S., Hashimoto, S., Suzuki, D. and Murase, Y., J. Controlled Release, 140, 186 (2009).Google Scholar
7) Yoshida, R., Tanaka, M., Onodera, S., Yamaguchi, T. and Kokufuda, E., J. Phys. Chem. A, 104, 7549 (2000).Google Scholar
8) Maeda, S., Hara, Y., Yoshida, R. and Hashimoto, S., Angew. Chem. Int. Ed., 47, 6690 (2008).Google Scholar
9) Tabata, O., Kojima, H., Kasatani, T., Isono, Y. and Yoshida, R., “Chemo-mechanical actuator using self-oscillating gel for artificial cilia”, Proc. Int. Conf. on MEMS 2003, pp.1215 (2003).Google Scholar
10) Maeda, S., Hara, Y., Sakai, T., Yoshida, R. and Hashimoto, S., Adv. Mater., 19, 3480 (2007).Google Scholar
11) Kuksenok, O., Yashin, V.V., Kinoshita, M., Sakai, T., Yoshida, R. and Balazs, A.C., J. Mater. Sci., 21, 8360 (2011).Google Scholar
12) Yoshida, R., Sakai, T., Ito, S. and Yamaguchi, T., J. Am. Chem. Soc., 124, 8095 (2002).Google Scholar
13) Hara, Y. and Yoshida, R., J. Phys. Chem. B, 112, 8427 (2008).Google Scholar
14) Suzuki, D., Sakai, T. and Yoshida, R., Angew. Chem. Int. Ed., 47, 917 (2008).Google Scholar
15) Suzuki, D. and Yoshida, R., Macromolecules, 41, 5830 (2008).Google Scholar
16) Suzuki, D. and Yoshida, R., Polymer J., 42, 501 (2010).Google Scholar
17) Suzuki, D., Taniguchi, H. and Yoshida, R., J. Am. Chem. Soc., 131, 12058 (2009).Google Scholar
18) Taniguchi, H., Suzuki, D. and Yoshida, R., J. Phys. Chem. B, 114, 2405 (2010).Google Scholar
19) Hara, Y. and Yoshida, R., J. Chem. Phys., 128, 224904 (2008).Google Scholar
20) Ueno, T., Bundo, K., Akagi, Y., Sakai, T. and Yoshida, R., Soft Matter, 6, 6072 (2010).Google Scholar
21) Murase, Y., Maeda, S., Hashimoto, S. and Yoshida, R., Langmuir, 25, 483 (2009).Google Scholar
22) Murase, Y., Hidaka, M. and Yoshida, R., Sensors and Actuators B: Chemical, 149, 272 (2010).Google Scholar
23) Murase, Y., Takeshima, R. and Yoshida, R., Macromol. Bioscience, 11, 1713 (2011).Google Scholar
24) Yoshida, R. and Murase, Y., Colloids and Surfaces B: Biointerfaces, in press.Google Scholar
25) Hidaka, M. and Yoshida, R., J. Controlled Release, 150, 171 (2011).Google Scholar
26) Yashin, V.V., Kuksenok, O., Balazs, A.C., Prog. Polym. Sci., 35, 155 (2010).Google Scholar
27) Lohmeijer, B.G.G. and Schubert, U.S., Angew. Chem. Int. Ed., 41, 3825 (2002).Google Scholar
28) Yashin, V.V., Kuksenok, O. and Balazs, A.C., J. Phys. Chem. B, 114, 6316 (2010).Google Scholar
29) Chen, I.C., Kuksenok, O., Yashin, V.V., Moslin, R.M., Balazs, A.C., Van Vliet, K.J., Soft Matter, 7, 3141 (2011).Google Scholar
30) Konotop, I.Y., Nasimova, I.R., Rambidi, N.G., Khokhlov, A.R., Polym. Sci., Ser B, 53, 26 (2011).Google Scholar
31) Delgado, J., Zhang, Y., Xu, B., Epstein, I.R., J. Phys. Chem. A, 115, 2208 (2011).Google Scholar
32) Horvath, J., Szalai, I., Boissonade, J., Soft Matter, 7, 8462 (2011).Google Scholar