Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:11:02.554Z Has data issue: false hasContentIssue false

Self-Organization (Assembly) in Biosynthesis of Silk Fibers - A Hierarchical Problem

Published online by Cambridge University Press:  21 February 2011

David L. Kaplan
Affiliation:
Biotechnology Division, U.S. Army Natick Research Center, Natick, Massachusetts, 01760, USA
Stephen Fossey
Affiliation:
Biotechnology Division, U.S. Army Natick Research Center, Natick, Massachusetts, 01760, USA
Christopher Viney
Affiliation:
Center for Bioengineering, University of Washington, Seattle, Washington, USA
Wayne Muller
Affiliation:
Biotechnology Division, U.S. Army Natick Research Center, Natick, Massachusetts, 01760, USA
Get access

Abstract

In natural systems, structural macromolecules undergo prescribed recognition and assembly steps during synthesis and processing. These associations lead to more complex assemblies that exhibit useful multifunctional properties. Many of these processes are not well understood. Some aspects of these processes are presented using the fibrous protein polymer silk as an example. Issues such as polymer chain biosynthesis, chain interactions, processing into fibrils, and complex engineering into supra-assemblies are addressed and biochemical, spectroscopic and modeling studies are reviewed. Genetic level controls of chain composition, crystalline/amorphous domain distribution, chain aggregation, chain registry, silk I-silk II phase transitions, nematic liquid crystalline phase, loss of water, global molecular alignment, and solution spinning are some of the characteristics of this biological system that are addressed. Although some information is available at the molecular and macro-scale levels, a key issue is the paucity of information at the meso-scale level to fully understand the role of structural hierarchy in the silk fiber assembly process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baer, E., Hiltner, A. and Keith, H. D., Science 235, 1015 (1987).Google Scholar
2. Kerkam, K., Kaplan, D., Lombardi, S. and Viney, C., Nature 349, 596 (1991).CrossRefGoogle Scholar
3. Kovoor, J., in Ecophysiology of Spiders. edited by Nentwig, W. (Springer-Verlag, Heidelberg, 1987), p. 160.Google Scholar
4. Gosline, J. M., DeMont, M. E. and Denny, M. W., Endeavour 10, 37 (1986).Google Scholar
5. Kaplan, D. L., Lombardi, S. J., Muller, W. and Fossey, S., in Biomaterials: Novel Materials from Biological Sources, edited by Byrom, D. (Stockton Press, New York, 1991).Google Scholar
6. Andersen, S. o., Comp. Biochem. Physiol. 35, 705 (1970).CrossRefGoogle Scholar
7. Tsujimoto, Y. and Suzuki, Y., Cell 18, 591 (1979).Google Scholar
8. Gage, L. P. and Manning, R. F., J. Biol. Chem. 255, 9451 (1980).CrossRefGoogle Scholar
9. Xu, M. and Lewis, R. V., Proc. Natl. Academy Sci. 87 7120 (1990).Google Scholar
10. Lombardi, S. J. and Kaplan, D. L., Polym. Preprints, Div. Polym. Chem., Am. Chem. Soc. 31, 195 (1990).Google Scholar
11. Lombardi, S. J. and Kaplan, D. L., Acta Zool. Fennica 190, 243 (1990).Google Scholar
12. Prosser, I. W. and Mecham, R. P., in Self-Assembling Architecture, edited by Varner, J. E. (Alan Liss, Inc., New York, 1988) p. 1.Google Scholar
13. Candelas, G. C. and Lozpex, F., Comp. Biochem. Physiol. 74, 637 (1983).Google Scholar
14. Lucas, F., Shaw, J. T. B. and Smith, S. G., in Advances in Protein Chemistry, edited by Anfinsen, C. B., Anson, M. L., Bailey, K. and Edsall, J. T. (Academic Press, New York, 1958) p. 107.Google Scholar
15. Shimura, K., Kikuchi, A., Ohtomo, K., Katagata, Y. and Hyodo, A., J. Biochem. 80, 693 (1976).Google Scholar
16. Lombardi, S. J. and Kaplan, D. L., J. Arachnol. 18, 297 (1990).Google Scholar
17. Strydom, D. J., Haylett, T. and Stead, R. H., Biochem. Res. Commun. 79, 932 (1977).CrossRefGoogle Scholar
18. Fraser, R. D. B. and MacRae, T. P., Conformation of Fibrous Proteins (Academic Press, New York, 1973).Google Scholar
19. Lucas, F., Shaw, J. T. B. and Smith, S. G., Biochem. J. 83, 164 (1962).Google Scholar
20. Robson, R. M., in Fiber Chemistry Handbook of Fiber Science and Technology, edited by Lewing, M., Pearle, E. (Marcel Dekker, NY, 1985).Google Scholar
21. Asakura, T., Makromol. Chemie 7, 755 (1986).Google Scholar
22. Viney, C., in Structure. Cellular Synthesis and Assembly of Biopolymers, edited by Case, S. T. (Springer Verlag, Heidelberg, 1992), in press.Google Scholar
23. Viney, C., Kerkam, K., Gilliland, L., Kaplan, D. and Fossey, S., in Complex Fluids edited by Sirota, E. (Mater. Res. Soc. Proc., Pittsburg, PA 1992) in press.Google Scholar
24. Asakura, T., Makromol. Chem. Rapid Commun. 7, 755 (1986)Google Scholar
25. Ishida, M., Asakura, T., Yokoi, M., Saito, H., Macromol. 23, 88 (1990)Google Scholar
26. Bell, A. L. and Peakall, D. B., J. Cell Biol. 42, 284 (1969).CrossRefGoogle Scholar
27. Akai, H., J. Sericulture Sci. Japan 55,163 (1986).Google Scholar
28. Marsh, R. E., Corey, R. B. and Pauling, L., Bichem. Biophys. Acta 16, 1 (1955).Google Scholar
29. Fossey, S. A., Nemethy, G., Gibson, K. D. and Scheraga, H. A., Biopolym. in press (1991).Google Scholar
30. Fossey, S. A., Nemethy, G., Gibson, K. D. and Scheraga, H. A., in Materials Synthesis Based on Biological Processes, edited by Alper, M., Calvert, P., Frankel, R., Rieke, P., Tirrell, D. (Mater. Res. Soc. Proc., Pittsburgh, PA 1991) pp. 239244.Google Scholar
31. Takahashi, Y., Gehoh, M., Yuzuriha, K., J. Polym. Phys. 29, 889 (1990).Google Scholar
32. Kratky, O., Farraday Soc. 52, 558 (1956).CrossRefGoogle Scholar
33. Veis, A., in Self-Assembling Architechture, edited by Varner, J. E. (Alan Liss, Inc., New York, 1988) p. 129.Google Scholar
34. Birk, D. E., Silver, F. H. and Trelstad, R. C., in Cell Biology of Extracellular Matrix, 2nd ed, edited by Hay, E. D. (Plenum Press, New York, 1991) p. 221.Google Scholar
35. Herrling, J. and Sparrow, L. G., J. Biol. Macromol. 13, 115 (1991).CrossRefGoogle Scholar
36. Lotz, B. and Colonna-Cesari, F., Biochimie 61, 205 (1979).Google Scholar
37. Yamaguchi, K., Kikuchi, Y., Takagi, T., Kikuchi, A., Oyama, F., Shimura, K. and Mizuno, S., J. Mol. Biol. 210, 127 (1989).Google Scholar
38. Kerkam, K., Kaplan, D. L., Lombardi, S. J. and Viney, C., in Materials Synthesis Based on Biological Processes edited by Alper, M., Calvert, P., Frankel, R., Rieke, P., Tirrell, D. (Mater. Res. Soc. Proc., Pittsburgh, PA 1991) pp. 239244.Google Scholar
39. Magoshi, J., Magoshi, Y. and Nakamura, S., J. Appl. Polym. Sci. 41,187 (1985).Google Scholar
40. Tillinghast, E. K., Chase, S.F and Townley, M. A., J. Insect Physiol. 30, 591(1984).Google Scholar
41. Foelix, R. F., in Biology of Spiders (Harvard University Press, Cambridge, MA 1982) p.121.Google Scholar
42. Dobb, M. G. and McIntyre, J. E., Adv. Polym. Sci. 60/61, 61(1984).Google Scholar
43. Peakall, D. B., J. Experiment. Zool. 176, 257 (1971).Google Scholar
44. Townley, M. A. and Tillinghast, E. K., J. Arachnol. 16, 303 (1988).Google Scholar