Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T01:29:12.705Z Has data issue: false hasContentIssue false

Self-Assembling Gels of a Hydrophobically Modified Biopolymer

Published online by Cambridge University Press:  10 March 2014

Pradeep Venkataraman
Affiliation:
Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118
Joy St. Dennis
Affiliation:
Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118
Rubo Zheng
Affiliation:
Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118
Jaspreet Arora
Affiliation:
Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118
Olasehinde Owoseni
Affiliation:
Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118
Vijay T. John*
Affiliation:
Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118
Srinivasa Raghavan
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Maryland., College Park, MD.
*
*Corresponding Author: vj@tulane.edu
Get access

Abstract

The self-assembly of a hydrophobically modified biopolymer (chitosan) is described with particular reference to gelation of these systems. The hydrophobic modification consists of the attachment of long chain alkyl groups inserted randomly along the polysaccharide backbone. The attachment of these alkyl groups to hydrophobic surfaces or the insertion into nonpolar liquids provides a ubiquitous and versatile way to create hierarchical structures, particularly the formation of self-assembled gels. Such self-assembly can be used in a variety of new technologies relating to chromatography, lubrication and the environmental remediation of oil spills through gelation of surface layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Aberg, C. M.; Chen, T. H.; Olumide, A.; Raghavan, S. R.; Payne, G. F. Journal of Agricultural and Food Chemistry 2004, 52, 788793.CrossRefGoogle Scholar
Dash, B. C.; Rethore, G.; Monaghan, M.; Fitzgerald, K.; Gallagher, W.; Pandit, A. Biomaterials 2010, 31, 81888197.CrossRefGoogle Scholar
El-Mekawy, A.; Hudson, S.; El-Baz, A.; Hamza, H.; El-Halafawy, K. Journal of Applied Polymer Science 2010, 116, 34893496.Google Scholar
Wang, Q. Z.; Chen, X. G.; Li, Z. X.; Wang, S.; Liu, C. S.; Meng, X. H.; Liu, C. G.; Lv, Y. H.; Yu, L. J. Journal of Materials Science-Materials in Medicine 2008, 19, 13711377.CrossRefGoogle Scholar
Yang, J.; Tian, F.; Wang, Z.; Wang, Q.; Zeng, Y. J.; Chen, S. Q. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2008, 84B, 131137.CrossRefGoogle Scholar
Lee, J. H.; Agarwal, V.; Bose, A.; Payne, G. F.; Raghavan, S. R. Physical Review Letters 2006, 96, -.Google Scholar
Payne, G. F.; Raghavan, S. R. Soft Matter 2007, 3, 521527.CrossRefGoogle Scholar
Zhu, C.; Lee, J.; Raghavan, S.; Payne, G. Langmuir 2006, 29512955.CrossRefGoogle Scholar
Zhu, C.; Wu, L.; Wang, X.; Lee, J.; English, D.; Ghodssi, R.; Raghavan, S.; Payne, G. Langmuir 2007, 286291.CrossRefGoogle Scholar
Ashbaugh, H. S.; Boon, K.; Prud'homme, R. K. Colloid and Polymer Science 2002, 280, 783788.CrossRefGoogle Scholar
Lee, J. H.; Gustin, J. P.; Chen, T. H.; Payne, G. F.; Raghavan, S. R. Langmuir 2005, 21, 2633.CrossRefGoogle ScholarPubMed
Venkataraman, P.; Tang, J. J.; Frenkel, E.; McPherson, G. L.; He, J. B.; Raghavan, S. R.; Kolesnichenko, V.; Bose, A.; John, V. T. Acs Applied Materials & Interfaces 2013, 5, 35723580.CrossRefGoogle Scholar
St Dennis, J. E.; Meng, Q. K.; Zheng, R. N.; Pesika, N. S.; McPherson, G. L.; He, J. B.; Ashbaugh, H. S.; John, V. T.; Dowling, M. B.; Raghavan, S. R. Soft Matter 2011, 7, 41704173.CrossRefGoogle Scholar
Desbrieres, J.; Martinez, C.; Rinaudo, M. International Journal of Biological Macromolecules 1996, 19, 2128.CrossRefGoogle Scholar
Kjoniksen, A. L.; Nystrom, B.; Iversen, C.; Nakken, T.; Palmgren, O.; Tande, T. Langmuir 1997, 13, 49484952.CrossRefGoogle Scholar
Philippova, O. E.; Volkov, E. V.; Sitnikova, N. L.; Khokhlov, A. R.; Desbrieres, J.; Rinaudo, M. Biomacromolecules 2001, 2, 483490.CrossRefGoogle Scholar
Shin, Y.; Wang, L. Q.; Bae, I. T.; Arey, B. W.; Exarhos, G. J. Journal of Physical Chemistry C 2008, 112, 1423614240.CrossRefGoogle Scholar
Wang, Q.; Li, H.; Chen, L. Q.; Huang, X. J. Carbon 2001, 39, 22112214.CrossRefGoogle Scholar
Bonacucina, G.; Cespi, M.; Palmieri, G. F. Aaps Pharmscitech 2009, 10, 368375.CrossRefGoogle Scholar
Macosko, C. W. Rheology: Principles, Measurements and Applications; VCH Publishers: New York, 1994.Google Scholar
Raghavan, S. R.; Riley, M. W.; Fedkiw, P. S.; Khan, S. A. Chemistry of Materials 1998, 10, 244251.CrossRefGoogle Scholar
Bandyopadhyay, R.; Sood, A. K. Journal of Colloid and Interface Science 2005, 283, 585591.CrossRefGoogle Scholar
Helgeson, M. E.; Hodgdon, T. K.; Kaler, E. W.; Wagner, N. J.; Vethamuthu, M.; Ananthapadmanabhan, K. P. Langmuir 2010, 26, 80498060.CrossRefGoogle Scholar
Nettesheim, F.; Liberatore, M. W.; Hodgdon, T. K.; Wagner, N. J.; Kaler, E. W.; Vethamuthu, M. Langmuir 2008, 24, 77187726.CrossRefGoogle Scholar
Fingas, M. In Oil Spill Science and Technology; Mervin, F., Ed.; Gulf Professional Publishing: Boston, 2011, p 435582.CrossRefGoogle Scholar
Oil Spill Dispersants: Efficacy and Effects, National Research Council, 2005.Google Scholar
Thibodeaux, L. J.; Valsaraj, K. T.; John, V. T.; Papadopoulos, K. D.; Pratt, L. R.; Pesika, N. S. Environmental Engineering Science 2011, 28, 8793.CrossRefGoogle Scholar
George-Ares, A.; Clark, J. R. Chemosphere 2000, 40, 897906.CrossRefGoogle Scholar
Steffy, D.; Nichols, A.; Kiplagat, G. Ocean Science Journal 2011, 46, 299305.CrossRefGoogle Scholar
Mukherjee, B.; Wrenn, B. A. Environmental Engineering Science 2011, 28, 263273.CrossRefGoogle Scholar
Kujawinski, E. B.; Soule, M. C. K.; Valentine, D. L.; Boysen, A. K.; Longnecker, K.; Redmond, M. C. Environmental Science & Technology 2011, 45, 12981306.CrossRefGoogle Scholar
Li, Z. K.; Lee, K.; King, T.; Kepkay, P.; Boufadel, M. C.; Venosa, A. D. Environmental Engineering Science 2009, 26, 11391148.CrossRefGoogle Scholar
Li, Z. K.; Lee, K.; King, T.; Boufadel, M. C.; Venosa, A. D. Environmental Engineering Science 2009, 26, 14071418.CrossRefGoogle Scholar
Belore, R. C.; Trudel, K.; Mullin, J. V.; Guarino, A. Marine Pollution Bulletin 2009, 58, 118128.CrossRefGoogle Scholar
Moles, A.; Holland, L.; Short, J. Spill Science & Technology Bulletin 2002, 7, 241247.CrossRefGoogle Scholar
Sterling, M. C.; Bonner, J. S.; Ernest, A. N. S.; Page, C. A.; Autenrieth, R. L. Marine Pollution Bulletin 2004, 48, 969977.CrossRefGoogle Scholar
Li, H.; Shi, L. H.; Wang, Q.; Chen, L. Q.; Huang, X. J. Solid State Ionics 2002, 148, 247258.CrossRefGoogle Scholar
Wu, C. T.; Chang, J. Materials Letters 2007, 61, 25022505.CrossRefGoogle Scholar
Zhan, J. J.; Kolesnichenko, I.; Sunkara, B.; He, J. B.; McPherson, G. L.; Piringer, G.; John, V. T. Environmental Science & Technology 2011, 45, 19491954.CrossRefGoogle Scholar
Zhan, J. J.; Sunkara, B.; Le, L.; John, V. T.; He, J. B.; McPherson, G. L.; Piringer, G.; Lu, Y. F. Environmental Science & Technology 2009, 43, 86168621.CrossRefGoogle Scholar