No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Carbon nanotubes (CNTs) are of great interest because of several unsurpassable physical (mechanical, electrical, thermal, and chemical) properties. Especially their large elastic modulus and breaking strength make them highly attractive for their use as reinforced agents in forming a new class of multifunctional advanced materials - onanocomposites, in addition to high conductivity (either in semiconducting or metallic regimes) achieved through lower percolation thresholds for several electronic applications. Among the known conducting polymers, polyaniline (PANI) has a high potential due to its ease of synthesis, excellent environmental, and thermal stability and reversible control of its electrical/electronic properties. In this work, PANI-single-/multiwalled NTs composites films containing different nanotube content of both kinds were synthesized by spin-cast preceded by ultrasonic mixing of the constituents. They were characterized using complementary techniques including scanning electron microscopy, X-ray diffraction, infrared and Raman spectroscopy, and conductivity revealing their microscopic structure and physical properties thus helping in establishing process-structure-property correlations. The present work will discuss some of these findings in terms of a) self-alignment of nanotubes in conducting polymer b) their optical and electrical properties, and c) their design with a view to electronic and sensor applications, all ascribed due to long range π-π interaction between the constituents.