Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T13:41:38.070Z Has data issue: false hasContentIssue false

Self Organization in Thin Films of a Substituted Perylene Imide with a Twisted Aromatic Core

Published online by Cambridge University Press:  26 February 2011

Harald Graaf
Affiliation:
harald.graaf@physik.tu-chemnitz.de, Technische Universität Chemnitz, Institut für Physik, Chemnitz D-09107, Germany
Christine C Mattheus
Affiliation:
Christine.Mattheus@asml.com, Justus-Liebig-Universität Giessen, Institute of Applied Physics, Heinrich-Buff-Ring 16, Giessen, D- 35392, Germany
Derck Schlettwein
Affiliation:
schlettwein@uni-giessen.de, Justus-Liebig-Universität Giessen, Institute of Applied Physics, Heinrich-Buff-Ring 16, Giessen, D- 35392, Germany
Get access

Abstract

The aromatic core of perylene bisimides can be twisted by chemical substitution with chlorine in the bay-position. An example for this strategy is 1,6,7,10-tetra-chloro-N,N'-dimethyl-perylene-tetracarboxylic-bisimide, Cl4MePTCDI. This twisting leads to a decrease in directed intermolecular interactions, which causes a decrease in the electronic coupling of the molecules, interesting to be investigated in thin films of this molecular semiconductor. An amorphous solid phase was formed by physical vapor deposition. This amorphous phase showed the tendency to crystallize under ambient conditions as apparent von optical microscopy at the films. The crystallized phase was investigated by atomic force microscopy AFM and optical methods, where a formation of weak excimers was found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, N., Yoshida, H., Tsutsumi, K., J. Mater. Chem. 10, 85 (2000).Google Scholar
2. Schlettwein, D., Hesse, K., Gruhn, N. E., Lee, P. A., Nebesny, K. W. and Armstrong, N. R., J. Phys. Chem. B 105, 4791 (2001).Google Scholar
3. Koma, A., Prog.Crystal Growth and Charact. 30, 129 (1995).Google Scholar
4. Forrest, S.R., Chem.Rev., 57, 1793 (1997).Google Scholar
5. Schlettwein, D., in Supramolecular Photosensitive and Electroactive Materials edited by Nalwa, H. S., Academic Press, San Diego 2001.Google Scholar
6. Schlettwein, D., Alloway, D., Back, A., Nebesny, K. W., Lee, P. A., and Armstrong, N. R. in Encyclopedia of Surface and Colloid Science edited by Hubbard, A., Marcel Dekker, New York 2002.Google Scholar
7. Klebe, G., Graser, F., Hädicke, E., Berndt, J., Acta.Cryst., B45, 69 (1989).Google Scholar
8. Lucia, E.A., Verderame, F.D., J.Phys.Chem. 48, 2674 (1968).Google Scholar
9. Schlettwein, D., Back, A., Fritz, T., Schilling, B., Armstrong, N.R., Chem. Mater., 10, 601 (1998).Google Scholar
10. Schlettwein, D., Graaf, H., Meyer, J.-P., Oekermann, T., Jaeger, N.I., J.Phys.Chem. B 103, 3078 (1999).Google Scholar
11. Graaf, H., Schlettwein, D., Jaeger, N.I., Synth. Met. 109, 151 (2000).Google Scholar
12. Graaf, H., Michaelis, W., Schnurpfeil, G., Jaeger, N., Schlettwein, D., Organic Electronics 5, 237 (2004).Google Scholar
13. Graaf, H., Schlettwein, D., J.Appl.Phys. in press.Google Scholar
14. Sadrai, M., Hadel, L., Sauers, R.R., Husain, S., Krogh-Jespersen, K., Westbrook, J.D., Bird, G.R., J.Phys.Chem. 96, 7988 (1992).Google Scholar
15. Chen, Z., Debije, M. J., Debaerdemaeker, T., Osswald, P., Würthner, F., ChemPhysChem. 5, 137 (2004).Google Scholar
16. Sadrai, M., Bird, G.R., Potenza, J.A., Schugar, H.J., Acta Cryst. C 46, 637 (1990).Google Scholar
17. Daehne, L., J.Am.Chem.Soc. 117, 12855 (1995).Google Scholar