Published online by Cambridge University Press: 01 February 2011
Embedded structural health monitoring systems are envisioned to be an important component of future transportation systems. One of the key challenges in designing an SHM system is the choice of sensors, and a sensor layout, which can detect unambiguously relevant structural damage. This paper focuses on the relationship between sensors, the materials of which they are made, and their ability to detect structural damage. Sensor selection maps have been produced which plot the capabilities of the full range of available sensor types vs. the key performance metrics (power consumption, resolution, range, sensor size, coverage). This exercise resulted in the identification of piezoceramic Lamb wave transducers as the sensor of choice. Experimental results are presented for the detailed selection of piezoceramic materials to be used as Lamb wave transducers.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.