Published online by Cambridge University Press: 26 February 2011
This paper reviews the recent studies on Schottky barrier and interface states at silicide-silicon interfaces, with emphasis placed on the results obtained from the epitaxial Ni suicides. A model based on interfacial defect states has been proposed to account for the overall chemical correlation between the barrier height and the metal electronegativity. Measurements on the barrier heights of type A, B and C epitaxial Ni suicides show that these three interfaces can be formed with high degrees of perfection to yield a barrier of 0.78 eV. Similar interfaces formed under less ideal conditions or with impurity incorporation decrease the barrier to 0.66 eV. The density and distribution of the interface states measured by a capacitance spectroscopy method correlate well with the structural perfection of the single and mixed-phase interfaces. A consistent picture seems to have emerged suggesting that the barrier height at silicide-Si interfaces is formed as a result of Fermi level pinning by interfacial defect states which are controlled primarily by the degree of perfection of the interface instead of the specific epitaxy.
Work supported in part by the Office of Naval Research.