Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T00:06:04.273Z Has data issue: false hasContentIssue false

Schizophrenic Molecules and Materials with Multiple Personalities - How Materials Science could Revolutionise How we do Chemical Sensing

Published online by Cambridge University Press:  31 January 2011

Robert Byrne
Affiliation:
robert.byrne@dcu.ie, National Centre for Sensor Research, Dublin, Ireland
Silvia Scarmagnani
Affiliation:
silvia.scarmagnani2@mail.dcu.ie, National Centre for Sensor Research, Dublin, Ireland
Alex Radu
Affiliation:
Aleksandar.Radu@dcu.ie, National Centre for Sensor Research, Dublin, Ireland
Fernando Benito-Lopez
Affiliation:
fernando.lopez@dcu.ie, National Centre for Sensor Research, Dublin, Ireland
Dermot Diamond
Affiliation:
dermot.diamond@dcu.ie, National Centre of Sensor Research, Dublin City University, Dublin 9, Dublin, D24, Ireland
Get access

Abstract

Molecular photoswitches like spiropyrans derivatives offer exciting possibilities for the development of analytical platforms incorporating photo-responsive materials for functions such as light-activated guest uptake and release and optical reporting on status (passive form, free active form, guest bound to active form). In particular, these switchable materials hold tremendous promise for microflow-systems, in view of the fact that their behaviour can be controlled and interrogated remotely using light from LEDs, without the need for direct physical contact. We demonstrate the immobilisation of these materials on microbeads which can be incorporated into a microflow system to facilitate photoswitchable guest uptake and release. We also introduce novel hybrid materials based on spiropyrans derivatives grafted onto a polymer backbone which, in the presence of an ionic liquid, produces a gel-like material capable of significant photoactuation behaviour. We demonstrate how this material can be incorporated into microfluidic platforms to produce valve-like structures capable of controlling liquid movement using light.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Shenker, S, et al., ACM SIGCOMM Computer Communication Review, 2003. 33(1): p. 137142.10.1145/774763.774785Google Scholar
2 D., Diamond, Internet-scale sensing. Analytical Chemistry, 2004. 76 (15): p. 278A286A.Google Scholar
3 D., Diamond, Internet-scale chemical sensing: is it more than a vision? NATO Security through Science, Series A: Chemistry and Biology, 2006. 2 (Advances in Sensing with Security Applications): p. 121146.Google Scholar
4 R., Byrne and Diamond, D., Chemo/bio-sensor networks. Nature Materials, 2006. 5(6): p. 421424.Google Scholar
5 R., Rosario, et al., Photon-Modulated Wettability Changes on Spiropyran-Coated Surfaces. Langmuir, 2002. 18(21): p. 80628069.Google Scholar
6 A., Szilagyi, et al., Rewritable Microrelief Formation on Photoresponsive Hydrogel Layers. Chemistry of Materials, 2007. 19(11): p. 27302732.Google Scholar
7 J., CranoC., et al., Photochromic compounds: chemistry and application in ophthalmic lenses. Pure and Applied Chemistry, 1996. 68(7): p. 13951398.Google Scholar
8 R., Guglielmetti, Spiropyrans and related compounds [applications]. Studies in Organic Chemistry (Amsterdam), 1990. 40 (Photochromism: Mol. Syst.): p. 855–78.Google Scholar
9 A.S., Dvornikov and Rentzepis, P.M., Accessing 3D memory information by means of nonlinear absorption. Optics Communications, 1995. 119 (3,4): p. 341–6.Google Scholar
10 I., Willner, et al., Reversible light-stimulated activation and deactivation of achymotrypsin by its immobilization in photoisomerizable copolymers. Journal of the American Chemical Society, 1993. 115(19): p. 8690–4.Google Scholar
11 G.E., Collins, et al., Photoinduced switching of metal complexation by quinolinospiropyranindolines in polar solvents. Chemical Communications (Cambridge), 1999(4): p. 321322.Google Scholar
12 G.E., Collins, et al., Spectrophotometric Detection of Trace Copper Levels in Jet Fuel. Energy & Fuels, 2002. 16(5): p. 10541058.Google Scholar
13 J.D., Winkler, Bowen, C.M., and Michelet, V., Photodynamic Fluorescent Metal Ion Sensors with Parts per Billion Sensitivity. Journal of the American Chemical Society, 1998. 120(13): p. 32373242.Google Scholar
14 T., Suzuki, et al., Photo-reversible Pb2+-complexation of insoluble poly(spiropyran methacrylate-co-perfluorohydroxy methacrylate) in polar solvents. Chemical Communications (Cambridge, United Kingdom), 2003(16): p. 20042005.Google Scholar
15 H., Gorner, Photochromism of nitrospiropyrans: effects of structure, solvent and temperature. Physical Chemistry Chemical Physics, 2001. 3(3): p. 416423.Google Scholar
16 H., Gorner and Chibisov, A.K., Complexes of spiropyran-derived merocyanines with metal ions – Thermally activated and light-induced processes. Journal of the Chemical Society-Faraday Transactions, 1998. 94(17): p. 25572564.Google Scholar
17 L. III, Evans, et al., Selective Metals Determination with a Photoreversible Spirobenzopyran. Analytical Chemistry, 1999. 71(23): p. 53225327.Google Scholar
18 B. I., Ipe Mahima, S., and Thomas, K.G., Light-Induced Modulation of Self-Assembly on Spiropyran-Capped Gold Nanoparticles: A Potential System for the Controlled Release of Amino Acid Derivatives. Journal of the American Chemical Society, 2003. 125(24): p. 71747175.Google Scholar
19 S., Stitzel, Byrne, R., and Diamond, D., LED switching of spiropyran-doped polymer films. Journal of Materials Science, 2006. 41(18): p. 58415844.Google Scholar
20 R.J., Byrne, Stitzel, S.E., and Diamond, D., Photoregenerable surface with potential for optical sensing. Journal of Materials Chemistry, 2006. 16(14): p. 13321337.Google Scholar
21 M.J.T., Frisch, Schlegel, G. W. Scuseria, H. B., Robb, G.E., Cheeseman, M. A. Montgomery, J. R. Jr., VrevenT., J. A.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; V., Barone; B., Mennucci; M., Cossi; G., Scalmani; N., Rega; G. A., Petersson; H., Nakatsuji; M., Hada; M., Ehara; K., Toyota; R., Fukuda; J., Hasegawa; M., Ishida; T., Nakajima; Y., Honda; O., Kitao; H., Nakai; M., Klene; X., Li; J. E., Knox; Hratchian, H. P.; Cross, J. B.; V., Bakken; C., Adamo; J., Jaramillo; R., Gomperts; R. E., Stratmann; O., Yazyev; A.J., Austin; R., Cammi; C., Pomelli; Ochterski, J. W.; Ayala, P. Y.; K., Morokuma; Voth, G. A.; P., Salvador; Dannenberg, J. J.; Zakrzewski, V. G.; S., Dapprich; A.D., Daniels; Strain, M. C.; O., Farkas; Malick, D. K.; Rabuck, A. D.; K., Raghavachari; Foresman, J. B.; Ortiz, J. V.; Q., Cui; Baboul, A. G.; S., Clifford; J., Cioslowski; Stefanov, B. B.; G., Liu; A., Liashenko; P., Piskorz; I., Komaromi; R. L., Martin; Fox, D. J.; T., Keith; Al-Laham, M. A.; Peng, C. Y.; A., Nanayakkara; M., Challacombe; Gill, P. M. W.; B., Johnson; W., Chen; Wong, M. W.; C., Gonzalez; and Pople, J. A., GAUSSIAN 03. 2004, Gaussian Inc: Wallingford CT.Google Scholar
22 D.R., MacFarlane, et al., Lewis base ionic liquids. Chemical Communications (Cambridge, United Kingdom), 2006(18): p. 19051917.Google Scholar
23 K., Modig, Pfrommer, B.G., and Halle, B., Temperature-Dependent Hydrogen-Bond Geometry in Liquid Water. Physical Review Letters, 2003. 90(7): p. 075502.Google Scholar
24 R., Byrne, et al., Photo-and solvatochromic properties of nitrobenzospiropyran in ionic liquids containing the [NTf2]- anion. Physical Chemistry Chemical Physics, 2008. 10(38): p. 59195924.Google Scholar
25 A., Radu, et al., Photonic modulation of surface properties: a novel concept in chemical sensing. Journal of Physics D: Applied Physics, 2007. 40(23): p. 72387244.Google Scholar
26 Kim, M.-S., et al., Transducers, 2003.Google Scholar
27 T., Adam, Lüdtke S., and Unger, K. K., Application of 0.5-μm porous silanized silica beads in electrochromatography Journal of Chromatography A, 1997. 786(2): p. 229235.Google Scholar
28 T., Adam, Lüdtke, S., and Unger, K. K., Packing and stationary phase design for capillary electroendosmotic chromatography (CEC). Chromatographia, 1999. 49: p. S49–S55.Google Scholar
29 Scarmagnani, Silvia, et al., Polystyrene bead-based system for optical sensing using spiropyran photoswitches. Journal of Materials Chemistry, 2008. 18: p. 50635071.Google Scholar
30 N., Reber, et al., Transport properties of thermo-responsive ion track membranes. Journal of Membrane Science, 2001. 193(1): p. 4958.Google Scholar
31 S., Sugiura, et al., Photoresponsive polymer gel microvalves controlled by local light irradiation. Sensors and Actuators, A: Physical, 2007. A140(2): p. 176184.Google Scholar
32 M., Kameda, et al., Photoresponse gas permeability of azobenzenefunctionalized glassy polymer films. Journal of Applied Polymer Science, 2003. 88(8): p. 20682072.Google Scholar
33 S.J., Kim, et al., Surprising shrinkage of expanding gels under an external load. Nature Materials, 2006. 5(1): p. 4851.Google Scholar
34 D.T., Eddington, et al., An organic self-regulating microfluidic system. Lab on a Chip, 2001. 1(2): p. 9699.Google Scholar
35 S., Sugiura, et al., Photoresponsive polymer gel microvalves controlled by local light irradiation. Sens. Actuators, A FIELD Full Journal Title:Sensors and Actuators, A: Physical, 2007. A140(2): p. 176184.Google Scholar
36 S., Sugiura, et al., On-demand microfluidic control by micropatterned light irradiation of a photoresponsive hydrogel sheet. Lab Chip, 2009. 9: p. 196198.Google Scholar