Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:42:32.199Z Has data issue: false hasContentIssue false

A Route to Stable Interfaces Between Dissimilarly Doped Conjugated Polymers

Published online by Cambridge University Press:  21 March 2011

Xin Zhou
Affiliation:
Department of Chemistry and The Materials Science Institute University of Oregon Eugene, OR 97403-1253
Brandi Langsdorf
Affiliation:
Department of Chemistry and The Materials Science Institute University of Oregon Eugene, OR 97403-1253
Mark C. Lonergan
Affiliation:
Department of Chemistry and The Materials Science Institute University of Oregon Eugene, OR 97403-1253
Get access

Abstract

A route to kinetically stable interfaces between dissimilarly doped conjugated polymers is proposed. The route relies on the use of internally compensated conjugated polymers to kinetically control interfacial redox chemistry. As a demonstration of the feasibility of the proposed route, the enhanced stability of an interface between an oxidatively doped, internally compensated poly(acetylene) and an undoped poly(acetylene) is reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referneces

1. Sze, S. M. Physics of Semiconductor Devices; Wiley: New York, 1981.Google Scholar
2. Handbook of Conducting Polymers; Skotheim, T. A., Ed.; Marcel Dekker, Inc.: New York, 1986; Vol. 1 & 2.Google Scholar
3. Handbook of Conducting Polymers; 2nd ed.; Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R., Eds.; Marcel Dekker, Inc.: New York, 1998.Google Scholar
4. Billingham, N. C.; Calvert, P. D. Adv. Polym. Sci. 1989, 90, p. 87.Google Scholar
5. Pei, Q.; Yu, G.; Zhang, C.; Yang, Y.; Heeger, A. J. Science 1995, 269, 1086.Google Scholar
6. Chiang, C. K.; Gau, S. C.; Fincher, C. R.; Park, Y. W.; MacDiarmid, A. G.; Heeger, A. J. Appl. Phys. Lett. 1978, 33, 18.Google Scholar
7. Aizawa, M.; Yamada, T.; Shinohara, H.; Akagi, K; Shirakawa, H. . Chem. Soc., Chem. Commun. 1986, 1315.Google Scholar
8. Miyauchi, S.; Goto, Y.; Tsubata, I.; Sorimachi, Y. Synth. Metals 1991, 41–43, 1051.Google Scholar
9. Wada, T.; Takeno, A.; Iwaki, M.; Sasabe, H.; Kobayashi, Y. J. Chem. Soc., Chem. Commun. 1985, 1194.Google Scholar
10. Patil, A. O.; Ikenoue, Y.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1987, 109, 1858.Google Scholar
11. Ikenoue, Y.; Chiang, J.; Patil, A. O.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1988, 110, 2983.Google Scholar
12. Yue, J.; Epstein, A. J. J. Am. Chem. Soc. 1990, 112, 2800.Google Scholar
13. Yue, J.; Wang, Z. H.; Cromack, K. R.; Epstein, A. J.; MacDiarmid, A. G. J. Am. Chem. Soc. 1991, 113, 2665.Google Scholar
14. Zhang, N.; Wu, R.; Li, Q.; Pakbaz, K.; Yoon, C. O.; Wudl, F. Chem. Mater. 1993, 5, 1598.Google Scholar
15. Chen, S.-A.; Hua, M.-Y. Macromolecules 1993, 26, 7108.Google Scholar
16. Langsdorf, B. L.; Zhou, X.; Adler, D. H.; Lonergan, M. C. Macromolecules 1999, 32, 2796.Google Scholar