Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:37:12.155Z Has data issue: false hasContentIssue false

The Role of the Band GAP in the Light-Induced Degradation of Amorphous Silicon Alloys

Published online by Cambridge University Press:  16 February 2011

Thomas Unold*
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403
Get access

Abstract

The dependence of the light-induced degradation on the band gap and hydrogen content in Amorphous silicon and related alloys is discussed. A simple model is presented which predicts that the light-induced degradation should be strongly correlated with the optical gap. In particular, for materials with Egap smaller than approximately 1.2eV no degradation is expected. The implications and consequences of the model for the task of reducing metastability in Amorphous silicon alloys are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Isomura, M., Xu, X. and Wagner, S., Solar Cells 30, 177 (1991).Google Scholar
2. Bube, R.H. and Redfield, D.. J. Appl. Phys. 66, 820 (1989).Google Scholar
3. Stutzmann, M., Jackson, W.B. and Tsai, C.C., Phys. Rev. B 32, 23 (1985).CrossRefGoogle Scholar
4. Stutzmann, M., Nunnenkamp, J., Brandt, M.S., and Asano, A., Phys. Rev. Lett. 67, 2347 (1991).Google Scholar
5. Mahan, A.H. and Vanecek, M., AIP Conf. Proc. 234, 195 (1991).Google Scholar
6. Unold, T. and Cohen, J.D., J. Non-Cryst. Solids 164–166, 23 (1993).Google Scholar
7. Morin, P.A., Wang, N.W. and Wagner, S., Mat. Res. Soc. Symp. Proc. vol. 258, 577 (1992).CrossRefGoogle Scholar
8. Schumm, G., Abel, C.D., and Bauer, G.H., Mat. Res. Soc. Symp. Proc. vol. 258, 505 (1992).CrossRefGoogle Scholar
9. Skumanich, A. and Amer, N.M., Appl. Phys. Lett. 52, 643 (1988).Google Scholar
10. Kolodzey, J., Aijishi, S., Smith, Z E., Chu, V., Schwartz, R., and Wagner, S., Mat. Res. Soc. Symp. Proc. 70, 371 (1986).Google Scholar
11. Unold, T., Cohen, J.D. and Fortmann, C.M., Appl. Phys. Lett. 64, 1716 (1994).Google Scholar
12. Stutzmann, M., Phil. Mag. B 60, 531 (1989).Google Scholar
13. Street, R.A. and Winer, K., Phys. Rev. B 40, 6236 (1989).Google Scholar
14. Street, R.A., Tsai, C.C., Stutzmann, M., and Kakalios, J., Phil. Mag. B 56, 289 (1987).Google Scholar
15. Fuhs, W. and Finger, F., J. Non-Cryst. Solids 114, 387 (1989).Google Scholar
16. Plaettner, R., Guenzel, E., Scheinbacher, G., and Schroeder, B., AIP Conf. Proc. 234, 218 (1991).Google Scholar
17. Unold, T. and Cohen, J.D., Appl. Phys. Lett. 58, 723 (1991).Google Scholar
18. Hautala, J., Unold, T., and Cohen, J.D., Mat. Res. Soc. Symp. Proc. vol. 258, 375 (1992).Google Scholar
19. Bar-Yam, Y., Joannopoulos, J.D., and Adler, D., AIP Conf. Proc. 157, 185 (1987).Google Scholar
20. Santos, P.V., Jackson, W.B. and Street, R.A., Phys. Rev. B 44, 12800 (1991).Google Scholar
21. Deng, X., Mytilineou, E., Young, R.T. and Ovshinsky, S.R., Mat. Res. Soc. Symp. Proc. vol. 258, 491 (1992).Google Scholar