Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T15:22:38.955Z Has data issue: false hasContentIssue false

The Role of Phase Stability in Ductile, Ordered B2 Intermetallics

Published online by Cambridge University Press:  26 February 2011

James R. Morris
Affiliation:
morrisj@ornl.gov, Oak Ridge National Laboratory, Materials Science & Technology Division, P.O. Box 2008, Oak Ridge, TN, 37831-6115, United States
Yiying Ye
Affiliation:
yiying ye@hotmail.com, Ames Laboratory, Iowa State University, Ames, IA, 50011, United States
Maja Krcmar
Affiliation:
krcmarm@ornl.gov, Grand Valley State University, Physics Department, One Campus Drive, PAD 144, Allendale, MI, 49401-9403, United States
Chong Long Fu
Affiliation:
cfu@ornl.gov, Oak Ridge National Laboratory, Materials Science & Technology Division, P.O. Box 2008, Oak Ridge, TN, 37831, United States
Get access

Abstract

We discuss the underlying atomistic mechanism for experimentally observed large tensile ductility in various strongly ordered B2 intermetallic compounds. First-principles calculations demonstrate that all of the compounds exhibit little energy differences between the B2, B27 and B33 phases. These calculations relate observations of ductility in YAg, YCu and ZrCo to shape-memory materials including NiTi. One transformation pathway between the B2 and B33 phases establishes a connection between this phase competition, and stacking faults on the {011}B2 plane. The low energy of such a stacking fault will lead to splitting of the b=<100> dislocations into b/2 partials, observed in ZrCo, TiCo, and in the B19' phase of NiTi. Calculations demonstrate that this pathway is competitive with the traditional pathway for NiTi.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yoo, M. H., Takasugi, T., Hanada, S. and Izumi, O., Mater. Trans. JIM 31, 435442 (1990).10.2320/matertrans1989.31.435Google Scholar
2. Gschneidner, K., Russell, A., Pecharsky, A. et al., Nature Materials 2, 587591 (2003).10.1038/nmat958Google Scholar
3. Yamaguchi, T., Kaneno, Y. and Takasugi, T., Scripta Materialia 52, 3944 (2005).10.1016/j.scriptamat.2004.09.002Google Scholar
4. Russell, A. M., Zhang, Z., Lograsso, T. A. et al., Acta Materialia 52, 40334040 (2004).10.1016/j.actamat.2004.05.019Google Scholar
5. Russell, A. M., Zhang, Z., Gschneidner, K. A. et al., Intermetallics 13, 565571 (2005).10.1016/j.intermet.2004.09.009Google Scholar
6. Schneibel, J. H., Darolia, R., Lahrman, D. F. and Schmauder, S., Metall. Trans. 24A, 13631371 (1993).10.1007/BF02668204Google Scholar
7. Ritter, C., Ibarra, M. R. and Ibberson, R. M., Journal of Physics-Condensed Matter 5, L39–L42 (1993).10.1088/0953-8984/5/4/001Google Scholar
8. Francois, A. and Veyssiere, P., Intermetallics 2, 922 (1994).10.1016/0966-9795(94)90046-9Google Scholar
9. Bendersky, L. A., Stalick, J. K., Portier, R. and Waterstrat, R. M., Journal of Alloys and Compounds 236, 1925 (1996).10.1016/0925-8388(96)80046-6Google Scholar
10. Waterstrat, R. M., Bendersky, L. A. and Kuentzler, R., in Proceedings of the International Conference on Martensitic Transformations, Monterey, Calif., 1992 (eds. Wayman, C. M. & Perkins, J., Monterey Inst. of Advanced Studies, Carmel, 1993), p. 545–50.Google Scholar
11. Schryvers, D., Firstov, G. S., Seo, J. W., VanHumbeeck, J. and Koval, Y. N., Scripta Materialia 36, 11191125 (1997).10.1016/S1359-6462(97)00003-1Google Scholar
12. Schryvers, D., Journal De Physique IV 5, 10471051 (1995).Google Scholar
13. Huang, X., Ackland, G. J. and Rabe, K. M., Nature Materials 2, 307311 (2003).10.1038/nmat884Google Scholar
14. Liu, F. S., Ding, Z., Li, Y. and Xu, H. B., Intermetallics 13, 357360 (2005).10.1016/j.intermet.2004.07.024Google Scholar
15. Hohnke, D. and Parthe, E., Acta Crystallographica 20, 572 (1966).10.1107/S0365110X66001282Google Scholar
16. Morris, J. R., Ye, Y. Y., Lee, Y. B., Harmon, B. N., Gschneidner, K. A. Jr and Russell, A. M., Acta Materialia 52, 48494857 (2004).10.1016/j.actamat.2004.06.050Google Scholar
17. Shindo, D., Yoshida, M., Lee, B. T., Takasugi, T. and Hiraga, K., Intermetallics 3, 167171 (1995).10.1016/0966-9795(95)92682-PGoogle Scholar
18. Kudoh, Y., Tokonami, M., Miyazaki, S. and Otsuka, K., Acta Metallurgica 33, 20492056 (1985).10.1016/0001-6160(85)90128-2Google Scholar
19. Michal, G. M. and Sinclair, R., Acta Crystallographica Section B-Structural Science 37, 18031807 (1981).10.1107/S0567740881007292Google Scholar
20. Ye, Y. Y., Chan, C. T. and Ho, K. M., Physical Review B 56, 36783689 (1997).10.1103/PhysRevB.56.3678Google Scholar
21. Kresse, G. and Hafner, J., Computational Materials Science 6, 15 (1996).10.1016/0927-0256(96)00008-0Google Scholar
22. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).10.1103/PhysRevB.54.11169Google Scholar
23. Hossain, D. and Harris, I. R., Journal of the Less-Common Metals 37, 3557 (1974).10.1016/0022-5088(74)90006-XGoogle Scholar
24. Ibarra, M. R., Marquina, C., Moze, O., Ibberson, R. M., Pavlovic, A. S. and Ritter, C., Physica B 180, 354356 (1992).10.1016/0921-4526(92)90757-JGoogle Scholar
25. Yoshida, M. and Takasugi, T., Philosophical Magazine A 68, 401417 (1993).10.1080/01418619308221212Google Scholar