Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:51:07.074Z Has data issue: false hasContentIssue false

The Role of Nitrogen-Induced Localization and Defects in InGaAsN (? 2% N): Comparison of InGaAsN Grown by Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  21 March 2011

Steven R Kurtz
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0601
A. A. Allermana
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0601
J. F. Klem
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0601
R. M. Sieg
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0601
C. H. Seager
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0601
E. D. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0601
Get access

Abstract

Nitrogen vibrational mode spectra, Hall mobilities, and minority carrier diffusion lengths are examined for InGaAsN (≈ 1.1 eV bandgap) grown by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). Independent of growth technique, annealing promotes the formation of In-N bonding, and lateral carrier transport is limited by large scale (Ęmean free path ) material inhomogeneities. Comparing solar cell quantum efficiencies for devices grown by MBE and MOCVD, we find significant electron diffusion in the MBE material (reversed from the hole diffusion occurring in MOCVD material), and minority carrier diffusion in InGaAsN cannot be explained by a “universal”, nitrogen-related defect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrences

1. Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl Phys. 31 Pt. 2, 853 (1992).Google Scholar
2. Bi, W. G. and Tu, C. W., Appl. Phys. Lett. 70, 1608 (1997).Google Scholar
3. Kondow, M., Kitatani, T., Nakatsuka, S., Larson, M. C., Nakahara, K., Yazawa, Y., and Okai, M., IEEE J. of Selected Topics in Quant. Elect. 3, 719 (1997), and references therein.Google Scholar
4. Choquette, K D., Klem, J. F., Fischer, A.J., Blum, O., Allerman, A. A., Fritz, I.J., Kurtz, S. R., Breiland, W. G., Sieg, R. M., Geib, K. M., Scott, J. W., and Naone, R. L., Electron. Lett. 36, 1388 (2000).Google Scholar
5. Kurtz, Sarah R., Myers, D., and Olsen, J. M., Proc. 26th IEEE Photovoltaics Spec. Conf. (IEEE, New York, 1997), p. 875.Google Scholar
6. Kurtz, Steven R., Allerman, A. A., Jones, E. D., Gee, J. M., Banas, J. J., and Hammons, B. E., Appl. Phys. Lett. 74, 729 (1999).Google Scholar
7. Rao, E. V. K., Ougazzaden, A., Bellego, Y. Le, and Juhel, M.,, Appl. Phys. Lett. 72, 1409 (1998).Google Scholar
8. Riede, V., Neumann, H., Sobotta, H., Schwabe, R., Siefert, W., and Schwetlick, S., Phys. Stat. Sol.(a) 93, K151 (1986).Google Scholar
9. Kurtz, Sarah, Webb, J., Gedvilas, L., Friedman, D., Geisz, J., Olsen, J., King, R., Joslin, D., and Karam, N., Appl. Phys. Lett. 78, 748 (2001).Google Scholar
10. Kurtz, Steven R., Allerman, A. A., Seager, C. H., Sieg, R. M., and Jones, E. D., Appl. Phys. Lett. 77, 400 (2000).Google Scholar
11. Skierbiszewski, C., Perlin, P., Wisniewski, P., Suski, T., Walukiewicz, W., Shan, W., Ager, J. W., Haller, E. E., Geisz, J. F., Friedman, D. J., Olsen, J. M., and Kurtz, S. R., Phys. Stat. Sol.(b) 216, 135 (1999).Google Scholar
12. Mott, N. F. and Davis, E. A., Electronic Processes in Non-Crystalline Materials, 2nd Ed., Clarendon Press, Oxford, 1979 Google Scholar
13. Karpov, V. G., Shik, A. Ya., and Shklovski, B. I., Sov. Phys. Semi. 16, 901 (1982).Google Scholar
14. Maruska, H. Paul, Ghosh, Amal K., Rose, Albert, and Feng, Tom, Appl. Phys. Lett. 36, 381 (1980).Google Scholar
15. McKay, H. A., Feenstra, R. M., Schmidtling, T., and Pohl, U. W., Appl. Phys. Lett. 78, 82 (2001).Google Scholar
16. Lyeo, H., Shih, C. K., Allerman, A. A., Kurtz, S. R., and Jones, E. D., to be publishedGoogle Scholar
17. Spruytte, Sylvia G., Coldren, Christopher W., Harris, James S., Wampler, William, Krispin, Peter, Ploog, Klaus, and Larson, Michael C., J. Appl. Phys. 89, 4401 (2001).Google Scholar
18. PC1D Version 5.2, Copyright Basore, P. A. and Clugston, D. A., Univ. of New South Wales, Aus. (1998).Google Scholar