Published online by Cambridge University Press: 26 February 2011
Interfaces play an important role in controlling the mechanical properties of composites. Optimum mechanical strength of scaffolds is of prime importance for bone tissue engineering. In the present work, molecular dynamics simulations and experimental studies have been conducted to study effect of interfacial interactions on mechanical properties of composites for bone replacement. In order to mimic biological processes, hydroxyapatite (HAP) is mineralized in presence of polyacrylic acid (PAAc) (in situ HAP). Further, solid and porous composites of in situ HAP with polycaprolactone (PCL) are made. Mechanical tests of composites of in situ HAP with PAAc have shown improved strain recovery, higher modulus/density ratio and also improved mechanical response in simulated body fluid (SBF). Simulation studies indicate potential for calcium bridging between –COO− of PAAc and surface calcium of HAP. This fact is also supported by infrared spectroscopic studies. PAAc modified surfaces of in situ HAP offer means to control the microstructure and mechanical response of porous composites. Nanoindentation experiments indicate that apatite grown on in situ HAP/PCL composites from SBF has improved elastic modulus and hardness. This work gives insight into the interfacial mechanisms responsible for mechanical response as well as bioactivity in biomaterials.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.