Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T23:58:04.715Z Has data issue: false hasContentIssue false

Role of CSL Boundaries on Displacement Cascades in β-SiC

Published online by Cambridge University Press:  23 January 2013

Prithwish K. Nandi*
Affiliation:
Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695
V. Ajay Annamareddy
Affiliation:
Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695
Jacob Eapen*
Affiliation:
Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

Molecular dynamics (MD) simulations are carried out to understand the mechanisms of damage production and recovery near grain boundaries in β-SiC under neutron irradiation. Our investigations show that the damage generated by radiation is reduced by the presence of a ∑9{122}[110] tilt grain boundary. Directional displacements which are averaged over an isoconfigurational ensemble are used to characterize the statistical nature of atomic mobility near the grain boundary.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rybicki, G. C., J. Appl. Phys. 78, 2996 (1995).10.1063/1.360048CrossRefGoogle Scholar
Capano, M. A., Trew, R. J., Mater. Res. Soc. Bull. 22, 19 (1997).10.1557/S0883769400032711CrossRefGoogle Scholar
Choyke, W. J., Pensl, G., Mater. Res. Soc. Bull. 22, 25 (1997).10.1557/S0883769400032723CrossRefGoogle Scholar
Raffray, A. R., Jones, R., Aiello, G., Billone, M., Giancarli, L., Golfier, H., Hasegawa, A., Katoh, Y., Kohyama, A., Nishio, S., Riccardi, B. and Tillack, M. S., Fusion Eng. and Design. 55, 55 (2001).10.1016/S0920-3796(01)00181-8CrossRefGoogle Scholar
Giancarli, L., Golfier, H., Nishio, S., Raffray, R., Wong, C. and Yamada, R., Fusion Eng. and Design. 6162, 307 (2002).10.1016/S0920-3796(02)00213-2CrossRefGoogle Scholar
Zhang, Y., Ishimaru, M., Varga, T., Oda, T., Hardiman, C., Xue, H., Katoh, Y., Shannon, S. and Weber, W. J., Phys. Chem. Chem. Phys. 14, 13429 (2012).10.1039/c2cp42342aCrossRefGoogle Scholar
Bai, X-M., Voter, A. F., Hoagland, R. G., Nastasi, M. and Uberuaga, B. P., Science 327, 1631 (2010).10.1126/science.1183723CrossRefGoogle Scholar
Demkowicz, M. J., Hoagland, R. G. and Hirth, J. P., Phys. Rev. Lett. 100, 136102 (2008).10.1103/PhysRevLett.100.136102CrossRefGoogle Scholar
Misra, A., Demkowicz, M.J., Zhang, X. and Hoagland, R.G., JOM 59, 62 (2007).10.1007/s11837-007-0120-6CrossRefGoogle Scholar
Swaminathan, N., wojdyr, M., Morgan, D. D. and Szlufarska, I., J. App. Phys. 111, 054918 (2012).10.1063/1.3693036CrossRefGoogle Scholar
Kohler, C., Phys. Stat. Sol.(b) 234, 522 (2002)10.1002/1521-3951(200211)234:2<522::AID-PSSB522>3.0.CO;2-Y3.0.CO;2-Y>CrossRef3.0.CO;2-Y>Google Scholar
Hiraga, K., Sci. Rep. Res. Inst. Tohoku Univ. A 32, 1 (1984).Google Scholar
Hagege, S., Shindo, D., Hiraga, K. and Hirabayashi, M., J. Phys. IV Colloq. 51, C1167 (1990).Google Scholar
Tanaka, K., Kohyama, M. and Iwasa, M., Mater. Sci. Forum 294296, 187 (1999).Google Scholar
Godon, C., Ragaru, C., Hardouin Duparc, O.B. M. and Lancin, M., Mater. Sci. Forum 294296, 277 (1999).Google Scholar
Kohyama, M., Modelling Simul. Mater. Sci. Eng. 10, R31R59 (2002).10.1088/0965-0393/10/3/202CrossRefGoogle Scholar
Plimpton, S., J Comp Phys, 117, 1 (1995). (http://lammps.sandia.gov/)10.1006/jcph.1995.1039CrossRefGoogle Scholar
Devanathan, R., Diaz, T.. Rubia, De la and Weber, W. J., J. Nucl. Mater. 253, 47 (1998).10.1016/S0022-3115(97)00304-8CrossRefGoogle Scholar