Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:28:29.820Z Has data issue: false hasContentIssue false

Robust Quantum-Based Interatomic Potentials for Multiscale Modeling in Transition Metals

Published online by Cambridge University Press:  01 February 2011

John A. Moriarty
Affiliation:
Lawrence Livermore National Laboratory, University of CaliforniaLivermore, CA 94551-0808, U.S.A.
Lorin X. Benedict
Affiliation:
Lawrence Livermore National Laboratory, University of CaliforniaLivermore, CA 94551-0808, U.S.A.
James N. Glosli
Affiliation:
Lawrence Livermore National Laboratory, University of CaliforniaLivermore, CA 94551-0808, U.S.A.
Randolph Q. Hood
Affiliation:
Lawrence Livermore National Laboratory, University of CaliforniaLivermore, CA 94551-0808, U.S.A.
Daniel A. Orlikowski
Affiliation:
Lawrence Livermore National Laboratory, University of CaliforniaLivermore, CA 94551-0808, U.S.A.
Mehul V. Patel
Affiliation:
Lawrence Livermore National Laboratory, University of CaliforniaLivermore, CA 94551-0808, U.S.A.
Per Söderlind
Affiliation:
Lawrence Livermore National Laboratory, University of CaliforniaLivermore, CA 94551-0808, U.S.A.
Frederick H. Streitz
Affiliation:
Lawrence Livermore National Laboratory, University of CaliforniaLivermore, CA 94551-0808, U.S.A.
Meijie Tang
Affiliation:
Lawrence Livermore National Laboratory, University of CaliforniaLivermore, CA 94551-0808, U.S.A.
Lin H. Yang
Affiliation:
Lawrence Livermore National Laboratory, University of CaliforniaLivermore, CA 94551-0808, U.S.A.
Get access

Abstract

First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in transition metals and alloys within density-functional quantum mechanics. In central bcc transition metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions. Selected applications to multiscale modeling discussed here include dislocation core structure and mobility, atomistically informed dislocation dynamics simulations of plasticity, and thermoelasticity and high-pressure strength modeling. Recent algorithm improvements have provided a more general matrix representation of MGPT beyond canonical bands, allowing improved accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed for dynamic simulations, and the still-in-progress development of temperature-dependent potentials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1See, for example, Moriarty, J. A., Vitek, V. Bulatov, V. V. and Yip, S. J. of Computer-Aided Mater. Design 9, 99 (2002) and references therein.Google Scholar
2 Hohenberg, P. and Kohn, W. Phys. Rev. 136, B864 (1964); W. Kohn, and L. J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
3 Moriarty, J. A., Phys. Rev. B 16, 2537 (1977) and Phys. Rev. B 26, 1754 (1982).Google Scholar
4 Moriarty, J. A., Phys. Rev. B 38, 3199 (1988).Google Scholar
5 Moriarty, J. A., Phys. Rev. B 42, 1609 (1990).Google Scholar
6 Moriarty, J. A., Phys. Rev. B 49, 12431 (1994).Google Scholar
7 Moriarty, J. A. and Widom, M. Phys. Rev. B 56, 7905 (1997).Google Scholar
8 Moriarty, J. A., Belak, J. F., Rudd, R. E., Söderlind, P., Streitz, F. H. and Yang, L. H., J. Phys.: Condens. Matter 14, 2825 (2002).Google Scholar
9 Moriarty, J. A. and Phillips, R. Phys. Rev. Lett. 66, 3036 (1991).Google Scholar
10 Yang, L. H., Söderlind, P. and Moriarty, J. A., Philos. Mag. A 81, 1355 (2001).Google Scholar
11 Moriarty, J. A., unpublished.Google Scholar
12 Yang, L. H., Söderlind, P. and Moriarty, J. A., Mater. Sci. Eng. A 309-310, 102 (2001).Google Scholar
13 Yang, L. H. and Moriarty, J. A., Mater. Sci. Eng. A 319-321, 124 (2001).Google Scholar
14 Yang, L. H., Söderlind, P., Tang, M. and Moriarty, J. A. (to be published).Google Scholar
15 Rao, S. and Woodward, C. Philos. Mag. A 81, 1317 (2001).Google Scholar
16 Tang, M. Kubin, L. P. and Canova, G. R., Acta mater. 46, 3221 (1998).Google Scholar
17 Orlikowski, D. A., Söderlind, P. and Moriarty, J. A. (to be published).Google Scholar
18 Soderlind, P. and Moriarty, J. A., Phys. Rev. B 57 10340 (1998).Google Scholar
19 Steinberg, D. J., Cochran, S. G. and Guinan, J. J. Appl. Phys. 51, 1498 (1980).Google Scholar
20 McMahan, A. K., Phys. Rev. B 58, 4293 (1998).Google Scholar
21 Glosli, J. N., unpublished.Google Scholar
22 Streitz, F. H. et al. (to be published).Google Scholar