Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T00:31:54.491Z Has data issue: false hasContentIssue false

A Robust Multilayer Dielectric Elastomer Actuator

Published online by Cambridge University Press:  28 May 2015

Mason A. Wolak
Affiliation:
US Naval Research Laboratory, Optical Sciences Division, Washington, DC 20375
Lei Zhu
Affiliation:
Case Western Reserve University, Macromolecular Sciences and Engineering, Cleveland, OH, 44106
Get access

Abstract

We recently fabricated and characterized a new class of multilayer dielectric elastomer films comprising alternating layers of two different polymers, at least one of which is an elastomer. The films discussed here contain THV (a terpolymer of poly(vinylidene fluoride)) and poly(ethylene octene) [EO] elastomer. The multilayer structure provides improved dielectric and electromechanical performance relative to monolithic films of THV or EO. These properties are controlled by the composition and the layer structure. For example, increasing the concentration of the elastomeric EO component increases the maximum axial strain (sz). Layering EO with THV also increases the breakdown strength (EB ∼ 265 - 300 V/µm) relative to monolithic EO (EB ∼ 150 V/µm) or THV (EB ∼ 245 V/µm) control films. This enhancement in breakdown strength is consistent with a barrier effect that is also observed in multilayer polymer capacitor films. The increase in breakdown strength allows 512-layer 75 vol% EO / 25 vol% THV films to achieve maximum axial strains of sz nearly 4%, higher than can be attained by either EO or THV films alone. In addition, layering reduces remnant strain and electromechanical hysteresis by limiting the effective field within the THV layers. The 75% EO/ 25% THV films show robust operational longevity with little loss in axial strain when subjected to repeated actuation at Emax = 225 V/µm (producing sz = 2.2%). Under these conditions, we observe 3,000 consecutive actuation cycles with no electrical breakdown. In comparison, single component EO control films undergo electrical breakdown at this field and THV control films survive only a few hundred actuation cycles under these conditions. The results demonstrate that multilayering is an effective technique to increase the dielectric strength of elastomer materials and in turn improve upon strain and operational longevity (repeated actuation cycles) characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brochu, P., Pei, Q. B., Macromol. Rapid Comm. 31, 10 (2010).CrossRefGoogle Scholar
Carpi, F., Bauer, S., De Rossi, D., Science 330, 1759 (2010).CrossRefGoogle ScholarPubMed
Pelrine, R., Kornbluh, R., Joseph, J., Heydt, R., Pei, Q., Chiba, S., Mater. Sci. and Eng.: C 11, 89 (2000).CrossRefGoogle Scholar
Rosset, S., Shea, H., Appl. Phys. A 110, 281 (2013).CrossRefGoogle Scholar
Carr, J. M., Mackey, M., Flandin, L., Schuele, D., Zhu, L., Baer, E., J. Polym. Sci. Part B: Poly. Phys. 51, 882 (2013).CrossRefGoogle Scholar
Mackey, M., Hiltner, A., Baer, E., Flandin, L., Wolak, M., Shirk, J., J. Phys. D: Appl. Phys. 42, 175304 (2009).CrossRefGoogle Scholar
Wolak, M. A., Pan, M.-J., Wan, A., Shirk, J. S., Mackey, M., Hiltner, A., Baer, E., Flandin, L., Appl. Phys. Lett. 92, 113301 (2008).CrossRefGoogle Scholar
Jin, Y., Tai, H., Hiltner, A., Baer, E., Shirk, J. S., J. Appl. Polym. Sci. 103, 1834 (2007).CrossRefGoogle Scholar
Beadie, G., Shirk, J. S., Rosenberg, A., Lane, P. A., Fleet, E., Kamdar, A. R., Jin, Y., Ponting, M., Kazmierczak, T., Yang, Y., Hiltner, A., Baer, E., Opt. Express 16, 11540 (2008).CrossRefGoogle Scholar
Sandrock, M., Wiggins, M., Shirk, J. S., Tai, H., Ranade, A., Baer, E., Hiltner, A., Appl. Phys. Lett. 84, 3621 (2004).CrossRefGoogle Scholar
Ponting, M., Hiltner, A., Baer, E., Macromol. Symposia 294, 19 (2010).CrossRefGoogle Scholar
Ho, J., Ramprasad, R., Boggs, S., IEEE Trans. Diel. Elec. Insul. 14, 1295 (2007).CrossRefGoogle Scholar
Wolak, M. A., Shirk, J. S., Mackey, M., Carr, J., Hiltner, A., Baer, E., MRS Proc. Lib. 1312, 19 (2011).Google Scholar
Viehland, D., Chen, Y.-H., J. Appl. Phys. 88, 6696 (2000).CrossRefGoogle Scholar
Wolak, M. A., Wan, A. S., Shirk, J. S., Mackey, M., Hiltner, A., Baer, E., J. Appl. Polym. Sci. 123, 2548 (2012).CrossRefGoogle Scholar
Wegener, M., Kunstler, W., Richter, K., Gerhard-Multhaupt, R., J. Appl. Phys. 92, 7442 (2002).CrossRefGoogle Scholar
Neese, B., Wang, Y., Chu, B., Ren, K., Liu, S., Zhaing, Q. M., Huang, C., West, J., Appl. Phys. Lett. 90, 242917 (2007).CrossRefGoogle Scholar
He, X., Yao, K., Gan, B. K., J. Appl. Phys. 97, 084101 (2005).CrossRefGoogle Scholar