Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T20:49:21.118Z Has data issue: false hasContentIssue false

Rheological Properties of Multi-Block Associative Polyelectrolytes Obtained by Nitroxide-Mediated Solution Polymerization

Published online by Cambridge University Press:  10 February 2014

Alejandro Coronado
Affiliation:
Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Venustiano Carranza Blvd and Ing. José Cárdenas Valdez St., 25280, Saltillo, Coahuila, México
Areli I. Velazquez
Affiliation:
Centro de Investigación en Química Aplicada (CIQA), 140 Enrique Reyna Blvd, 25294, Saltillo, Coahuila, México
Enrique J. Jiménez
Affiliation:
Centro de Investigación en Química Aplicada (CIQA), 140 Enrique Reyna Blvd, 25294, Saltillo, Coahuila, México
Get access

Abstract

A multi-block associative polyelectrolyte based on poly(methacrylic acid-ra-styrene) [MAA-S] and poly(octadecyl methacrylate) [ODMA] was synthesized through stepwise nitroxide-mediated solution polymerizations. The obtained polymer has a heptablock copolymer structure, alternating MAA-S as hydrophilic blocks (theoretical degree of polymerization [DPT] of 250), and ODMA as hydrophobic blocks (DPT = 15). Rheological properties, in the linear-response regime, of aqueous solutions (polymer content = 1.5 wt.%) were studied as a function of the amount of blocks on the polymer using steady-shear and creep-compliance experiments. Rheological experiments demonstrate that the viscoelastic behavior of the polymer bearing an ODMA block in terminal position greatly differs from that of the polymer with MAA-S block terminations. The former behaves as a newtonian fluid on a wider range of shear rates than the latter, which exhibit a shear-thinning behavior, even at low shear rates, independently of the molecular weight and number of blocks.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tsitsilianis, C., Aubry, T., Iliopoulos, I. and Norvez, S., Macromolecules 43, 7779 (2010).CrossRefGoogle Scholar
Lara Ceniceros, A.C., Rivera Vallejo, C.C. and Jiménez Regalado, E.J., Polym. Bull. 59, 499 (2007).CrossRefGoogle Scholar
Hill, A., Candau, F. and Selb, J., in Trends in Colloid and Interface Science V, edited by Corti, M. and Mallamace, F. (Dietrich Steinkopff Verlag GmbH & Co. KG, Strasbourg Cedex, France, 1991), p. 6165.CrossRefGoogle Scholar
Jiménez Regalado, E.J., Pliego, G. Cadenas, Álvarez, M. Pérez and Valdez, Y. Hernández, Macromol. Res. 12, 451 (2004).Google Scholar
Controlled Radical Polymerization Guide: ATRP|RAFT|NMP, edited by Aldrich Materials Science (2011), p. 52.Google Scholar
Matyjaszewski, K. and Xia, J., in Handbook of Radical Polymerization, edited by Matyjaszewski, K. and Davis, T.P., (WILEY-INTERSCIENCE: John Wiley and Sons, Inc., 2002), p. 523.Google Scholar
Chiefari, J., Chong, Y.K.B., Ercole, F., Krstina, J., Jeffery, J., Le, T.P.T., Mayadunne, R.T.A., Meijs, G.F., Moad, C.L., Moad, G., Rizzardo, E. and Thang, S.H., Macromolecules 31, 5559 (1998).CrossRefGoogle Scholar
Rizzardo, E. and Solomon, D.H., Aust. J. Chem. 65, 945 (2012).CrossRefGoogle Scholar
Moad, G. and Solomon, D.H., The Chemistry of Radical Polymerization, 2nd ed (Elsevier Ltd, 2006) p. 413.Google Scholar
Georges, M.K., Veregin, R.P.N., Kazmaier, P.M. and Hamer, G.K., Macromolecules 26, 2987 (1993).Google Scholar
Hawker, C.J., Bosman, A.W. and Harth, E., Chem. Rev. 101, 3661 (2001).CrossRefGoogle Scholar
Kimerling, A.S., (Skip) Rochefort, W.E. and Bhatia, S.R., Ind. Eng. Chem. Res. 45, 6885 (2006).CrossRefGoogle Scholar
Grubbs, R.B., Polym. Rev. 51, 104 (2011).CrossRefGoogle Scholar
Dire, C., Charleux, B., Magnet, S. and Couvreur, L., Macromolecules 40, 1897 (2007).CrossRefGoogle Scholar
Odian, G., Principles of Polymerization, 4th ed (WILEY-INTERSCIENCE: John Wiley and Sons, Inc., 2004) p. 297.Google Scholar
Lefay, C., Charleux, B., Save, M., Chassenieux, C., Guerret, O. and Magnet, S., Polymer 47, 1935 (2006).Google Scholar
Tirtaatmadja, V., Tam, K.C. and Jenkins, R.D., Macromolecules 30, 3271 (1997).CrossRefGoogle Scholar
Abdala, A.A., PhD Thesis, North Carolina State University, 2002.Google Scholar
Kujawa, P., Hayet, A. Audibert, Selb, J. and Candau, F., J. Polym. Sci. Part B Polym. Phys. 42, 1640 (2004).CrossRefGoogle Scholar
Kujawa, P., Hayet, A. Audibert, Selb, J. and Candau, F., Macromolecules 39, 384 (2006).CrossRefGoogle Scholar
Popescu, M.T., Tsitsilianis, C., Papadakis, C.M., Adelsberger, J., Balog, S., Busch, P., Hadjiantoniou, N.A. and Patrickios, C.S., Macromolecules 45, 3523 (2012).CrossRefGoogle Scholar