Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:50:37.799Z Has data issue: false hasContentIssue false

Response Time of a-Si:H Photosensors in Optically Addressed Spatial Light Modulators

Published online by Cambridge University Press:  21 February 2011

Garret Moddel
Affiliation:
Department of Electrical and Computer Engineering, and Optoelectronic, Computing Systems Center, University of Colorado, Boulder, CO 80309–0425
Pierre R. Barbier
Affiliation:
Department of Electrical and Computer Engineering, and Optoelectronic, Computing Systems Center, University of Colorado, Boulder, CO 80309–0425
Get access

Abstract

A successful application for a-Si:H is as the photosensor in a liquid crystal optically addressed spatial light modulator (OASLM). We analyze the response time of an a-Si:H p-i-n photodiode in a “pseudo-OALSM,” in which the liquid crystal is replaced by an equivalent capacitor, under both forward and reverse bias. Under reverse bias the two important effects are the photocurrent response time, and residual trapped charge. Under forward bias the mechanism shifts from double injection regimes to ohmic transport as a function of voltage. We relate these characteristics to the operation of an OASLM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beard, T. D., Bleha, W. P., and Wong, S.-Y., Appl. Phys. Lett., 22 (3), 9094 (1973).CrossRefGoogle Scholar
2. Efron, U., J. Appl. Phys., 57 (4), 13561368 (1985).CrossRefGoogle Scholar
3. Sterling, R. D., Te Kolste, R. D., Haggerty, J. M., Borah, T. C., and Bleha, W. P., Soc. Information Display Digest of Technical Papers 21, May 1990, pp. 327329.Google Scholar
4. Ashley, P. R., and Davis, J. H., Appl. Optics, 26 (2), 241246 (1987).CrossRefGoogle Scholar
5. Moddel, G., Johnson, K. M., and Handschy, M. A., Soc. Phot. Instr. Eng. 754 Optical and Digital Pattern Recognition, 1987, pp. 207213.Google Scholar
6. Williams, D., Latham, S. G., Powles, C. M. J., Powell, M. A., Chittick, R. C., Sparks, A. P., and Collings, N., J. Phys. D, Appl. Phys., 21 S156S159 (1988).Google Scholar
7. Moddel, G., Kuo, C. T., Johnson, K.M. and Li, W., Amorphous Silicon Technology, (Mater. Res. Soc. Symp. Proc. 118, Pittsburgh, PA, 1988) pp. 405410;Google Scholar
Li, W., Rice, R. A., Moddel, G., Pagano-Stauffer, L. A., and Handschy, M. A., IEEE Trans. Electron Devices, 36 (12), 29592964 (1989).Google Scholar
8. Yamamoto, S., Sci. Tech. Japan, 9 (34), 2021 (1990).Google Scholar
9. Fukushima, S., Kurokawa, T., Matsuo, S., and Kozawaguchi, H., Optics Lett., 15 (5), 285287 (1990).CrossRefGoogle Scholar
10. Gomes, C. M., Tsujikawa, S., Maeda, H., Sekine, H., Yamazaki, T., Sakamoto, M., Okumura, F., and Kobayashi, S., Jap. J. Appl. Phys., 30, L386 (1991).CrossRefGoogle Scholar
11. Abdulhalim, I., Moddel, G., Johnson, K.M., and Walker, C.M., J. Non-Cryst. Solids, 115, 162 (1989).Google Scholar
12. Landreth, B., Mao, C.-C., and Moddel, G., Jap. J. Appl. Phys., 30 (7) (1991).Google Scholar
13. Moddel, G., Ch. 11 in Amorphous and Microcrystalline Semiconductor Devices: Optoelectronic Devices, Kanicki, J., editor, (Artech House, Norwood MA, 1991) pp. 369412.Google Scholar
14. Cannella, V., McGill, J., Yaniv, Z., and Silver, M., Soc. Phot. Instr. Eng. 617, Amorphous Semiconductors for Microelectronics, 5155 (1986).Google Scholar
15. Baron, R. and Mayer, J. W., Ch. 5 in Semiconductors and Semimetals, Vol. 6, Injection Phenomena, Willardson, R.K. and Beer, A.C., editors, (Academic Press, New York and London, 1970) pp. 201313.Google Scholar
16. Walker, C. M., Landreth, B., and Moddel, G., Amorphous Silicon Technology-1990, edited by Taylor, P.C., Thompson, M.J., LeComber, P.G., Hamakawa, Y., and Madan, A. (Mater. Res. Soc. Symp. Proc. 192, Pittsburgh, PA, 1990) pp. 467472.Google Scholar