Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:00:44.913Z Has data issue: false hasContentIssue false

Resistive Anomaly Relevant to Nd Moments in the Antiferromagnetic Phase of the Bandwidth-Controlled Manganites

Published online by Cambridge University Press:  18 March 2011

H. Kuwahara
Affiliation:
Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan PRESTO, Japan Science and Technology Corporation (JST), Tokyo, Japanh-kuwaha@sophia.ac.jp
K. Noda
Affiliation:
Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
R. Kawasaki
Affiliation:
Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
Get access

Abstract

We have investigated the electronic and magnetic properties of (Nd1−ySmy)0.45Sr0.55MnO3(0≤y≤1) crystals, in which one-electron bandwidth (W ) is systematically decreased from the parent compound (y=0) with increase of y. We have found remarkable magnetic phase transition concerning the change of rare-earth (RE) moments in low temperatures below 25 K. The subtle drop in resistivity superimposed upon the spin-valve like magnetoresistance (MR) was observed for the isothermal MR measurements, e.g. δρ(H)|ρ(H')≍4.7% at 3.5 T and 4 K. The phase transition fields corresponding to these concomitant magnetic and resistive changes monotonically decrease with temperature and disappear above ∼25 K. It turned out that the resistive drop is due to the field-induced increase of magnetic moments ofRE ions from magnetization measurements. The field-induced phase transition from the small moment state to the large one in RE ions can be explained in terms of energy level crossing between the crystal-field-split J multiplets by the Zeeman effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kawano, H., Kajimoto, R., Yoshizawa, H., Tomioka, Y., Kuwahara, H. and Tokura, Y., Phys. Rev. Lett. 78, 4253 (1997).Google Scholar
2. Kuwahara, H., T. Okuda, Tomioka, Y., Asamitsu, A. and Tokura, Y., Phys. Rev. Lett. 82, 4316 (1999).Google Scholar
3. Akimoto, T., Maruyama, Y., Moritomo, Y., Nakamura, A., Hirota, K., Ohoyama, K. and Ohashi, M., Phys. Rev. B 57 R5594 (1998).Google Scholar
4. Noda, K., R. Kawasaki, and Kuwahara, H., (in preparation).Google Scholar
5. Gordon, J.E., Fisher, R.A., Jia, Y.X., Phillips, N.E., Reklis, S.F., Wright, D.A. and Zettl, A., Phys. Rev. B 59, 127 (1999).Google Scholar
6. Park, J.-G., Kim, M.S., Ri, H.-C., Kim, K.H., Noh, T.W. and Cheong, S.-W., Phys. Rev. B 60, 14804 (1999).Google Scholar
7. Kuwahara, H., Moritomo, Y., Tomioka, Y., Asamitsu, A., Kasai, M., Kumai, R. and Tokura, Y., Phys. Rev. B 56, 9386 (1997).Google Scholar
8. Kajimoto, R., Yoshizawa, H., Kawano, H., Kuwahara, H., Tokura, Y., Ohoyama, K. and Ohashi, M., Phys. Rev. B 60, 9506 (1999).Google Scholar
9. Hayashi, T., K. Noda, Kuwahara, H., and Miura, N., (in preparation).Google Scholar
10. Rosenkranz, S., Medarde, M., Fauth, F., Mesot, J., Zolliker, M., Furrer, A., Staub, U., Lacorre, P., Osborn, R., Eccleston, R.S., Trounov, V., Phys. Rev. B 60, 14857 (1999).Google Scholar