Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:17:26.587Z Has data issue: false hasContentIssue false

Resist Requirements for Electron Projection and Direct Write Nanolithography

Published online by Cambridge University Press:  15 March 2011

Leonidas E. Ocola*
Affiliation:
Agere Systems, Murray Hill NJ 07974, USA
Get access

Abstract

This paper will discuss aspects of resist properties required for nanolithography using high-energy electrons. A comprehensive image formation model is presented for positive and negative chemically amplified resists where most aspects have been considered (from exposure through development) for e-beam nanolithography (EPL, DWL). A series of optimization studies are performed using the modulation of soluble site density after PEB as a metric to characterize resist imaging performance. Base loading, blocking fraction and acid diffusion properties are investigated. Slower acid diffusion near regions with deprotected sites dominates during PEB and contributes to a sharp image modulation. Electron beam exposed nanostructures exhibit spatial fluctuations of soluble sites in the material left after development, which may alter etch resistance and pattern collapse. Soluble site fluctuations arise from the low statistics involved in the image formation and are significant contributors to the sidewall roughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Berger, S. D., Gibson, J. M., Appl. Phys. Lett., 57, 153, (1990)Google Scholar
2. Ocola, L. E., Li, W-Y., Kasica, R. J., Blakey, M. I., Orphanos, P. A., Waskiewicz, W. K., Novembre, A. E., Sato, M., Microelec. Engineering, 53, 433, (2000)Google Scholar
3. Ocola, L. E., Blakey, M. I., Orphanos, P. A., Li, W.-Y., Kasica, R. J., Novembre, A. E., J. Photopolymer Science and Technology, 14, 547, (2001)Google Scholar
4. Tagawa, S., Nagahara, S., Yamamoto, Y., Werst, D., Trifunac, A. D., Proc. SPIE, 3999, 204, (2000)Google Scholar
5. Schmid, G. M., Singh, V. K., Flanagin, L. W., Stewart, M. D., Burns, S. D., Willson, C. G., Proc. SPIE, 3999, 675, (2000)Google Scholar
6. Patsis, G. P., Tserepi, A., Raptis, I., Glezos, N., Gogolides, E., Valamontes, E. S., J. Vac. Sci. Technol, B18, 3292, (2000)Google Scholar
7. Hinsberg, W., Houle, F., Sanchez, M., Morrison, M., Wallraff, G., Larson, C., Hoffnagle, J., Brock, P., Breyta, G., Proc. SPIE, 3999, 148, (2000)Google Scholar
8. Stewart, M., Somervell, M. H., Tran, H. V., Postnikov, S. V., Willson, C. G., Proc. SPIE, 3999, 665, (2000)Google Scholar
9. Houlihan, F. M., Dabbagh, G., Rushkin, I., Hutton, R., Bolan, K., Reichmanis, E., Nalamasu, O., Yan, Z., Reiser, A., Radiation Physics and Chemistry, 62, 69, (2001)Google Scholar
10. Thackeray, J., Fedynyshyn, T. H., Kang, D., Rajaratnam, M. M., Wallraff, G., Opitz, J., Hofer, D., J. Vac. Sci. Technol., B14, 4267, (1996)Google Scholar
11. He, D., Cerrina, F., J. Vac. Sci. Technol., B16, 3748, (1998)Google Scholar