Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:56:29.139Z Has data issue: false hasContentIssue false

Relaxation Behavior and Breakdown Mechanisms of Nanocrystals Embedded Zr-doped HfO2 High-k Thin Films for Nonvolatile Memories

Published online by Cambridge University Press:  01 February 2011

Chia-Han Yang
Affiliation:
cyang4@utk.edu, Texas A&M University, College Station, TX, 77843-3122, United States
Yue Kuo
Affiliation:
yuekuo@tamu.edu, Texas A&M University, Thin Film Nano & Microelectronics Research Laboratory, 235 J. E. Brown Eng. Bldg., MS 3122, TAMU, College Station, TX, 77843-3122, United States, 979-845-9807, 979-458-8836
Chen-Han Lin
Affiliation:
alou0882@tamu.edu, Texas A&M University, College Station, TX, 77843-3122, United States
Rui Wan
Affiliation:
rwan@utk.edu, University of Tennessee, Knoxville, TN, 37996, United States
Way Kuo
Affiliation:
way@utk.edu, University of Tennessee, Knoxville, TN, 37996, United States
Get access

Abstract

Semiconducting or metallic nanocrystals embedded high-k films have been investigated. They showed promising nonvolatile memory characteristics, such as low leakage currents, large charge storage capacities, and long retention times. Reliability of four different kinds of nanocrystals, i.e., nc- Ru, -ITO, -Si and -ZnO, embedded Zr-doped HfO2 high-k dielectrics have been studied. All of them have higher relaxation currents than the non-embedded high-k film has. The decay rate of the relaxation current is in the order of nc-ZnO > nc-ITO > nc-Si > nc-Ru. When the relaxation currents of the nanocrystals embedded samples were fitted to the Curie-von Schweidler law, the n values were between 0.54 and 0.77, which are much lower than that of the non embedded high-k sample. The nanocrystals retain charges in two different states, i.e., deeply and loosely trapped. The ratio of these two types of charges was estimated. The charge storage capacity and holding strength are strongly influenced by the type of material of the embedded nanocrystals. The nc-ZnO embedded film holds trapped charges longer than other embedded films do. The ramp-relax result indicates that the breakdown of the embedded film came from the breakdown of the bulk high-k film. The type of nanocrystal material influences the breakdown strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The International Technology Roadmap for Semiconductors. Semiconductor Industry Association, December (2003).Google Scholar
2. Chatterjee, S. Samanta, S. K. Banerjee, H. D. and Maiti, C. K. Semicond. Sci. Technol., 17, 993 (2003).Google Scholar
3. Lu, J. Kuo, Y. Yan, J. and Lin, C.-H. Jpn. J. Appl. Phys., 45 (34), L901 (2006).Google Scholar
4. Kuo, Y. Yan, J. and Lin, C.-H. in Proceedings of the 6th IEEE conference on Nanotechnology, 469 (2006).Google Scholar
5. Mielke, N. and Chen, J. in Oxide Reliability: A Summary of Silicon Oxide Wearout, Breakdown and Reliability, D. J., Dumin 103 (2002).Google Scholar
6. Tiwari, S. Rana, F. Hanafi, H. Hartstein, A. Crabbé, E. F., and Chan, K. Appl. Phys. Lett., 68 (10), 1377 (1996).Google Scholar
7. Salvo, B. De, Ghibaudo, G. Pananakakis, G. Masson, P. Baron, T. Buffet, N. Fernandes, A. and Guillaumot, B. IEEE Trans. on Electron Devices, 48, 1789 (2001).Google Scholar
8. Blauwe, J. De, IEEE Trans. Nanotechnol., 1, 72 (2002).Google Scholar
9. Liu, Z. Lee, C. Narayanan, V. Pei, G. and Kan, E. C. IEEE Trans. Electron Devices, 49, 1606 (2002).Google Scholar
10. Liu, Z. Lee, C. Narayanan, V. Pei, G. and Kan, E. C. IEEE Trans. Electron Devices, 49, 1614 (2002).Google Scholar
11. Lu, J. Lin, C.-H. and Kuo, Y. ECS Trans.,11 (4), 509 (2007).Google Scholar
12. Birge, A. and Kuo, Y. Journal of the Electrochemical Society, 154 (10), H887 (2007).Google Scholar
13. Farmer, D. B. and Gordon, R. G. J. Appl. Phys., 101, 124503 (2006).Google Scholar
14. Kuo, Y. Lu, J. Chatterjee, S. Yan, J. Yuan, T. Kim, H.-C. Luo, W. Peterson, J. and Gardner, M., in ECS. Trans., 1, 447 (2006).Google Scholar
15. Triyoso, D. ECS Trans., 3, 463 (2006).Google Scholar
16. Kuo, Y. ECS. Trans., 3, 253 (2006).Google Scholar
17. Kuo, Y. ECS. Trans., 2, 13 (2006).Google Scholar
18. Yan, J. Kuo, Y. and Lu, J. Electrochem. Solid-State Lett., 10 (7), H199 (2007).Google Scholar
19. Jameson, J. R. Harrison, W. Griffin, P. B. and Plummer, J. D. Appl. Phys. Lett., 84, 3489 (2004).Google Scholar
20. Jonscher, A. K. Dielectric Relaxation in Solids. New York: Chelsea (1983).Google Scholar
21. Reisinger, H. et al. , in IEDM Tech. Dig., 267 (2001).Google Scholar
22. Xu, Z. Pantisano, L. Kerber, A. Degraeve, R. Cartier, E. Gendt, S. De, Heyns, M. and Groeseneken, G., IEEE Trans. on Electron Devices, 51 (3), 402 (2004).Google Scholar
23. Luo, W. Kuo, Y. and Kuo, W. IEEE Trans. on Device and Materials Reliability, 4 (3), 488 (2004).Google Scholar
24. Luo, W. Yuan, T. Kuo, Y. Lu, J. Yan, J. and Kuo, W. Appl. Phys. Lett., 89, 072901 (2006).Google Scholar
25. Nicollian, E. H. and Brews, J. R. Metal Oxide Semiconductor Physics and Technology, 478, Wiley, Hoboken, NJ (2003).Google Scholar
26. Yang, C.-H. Kuo, Y. Wan, R. Lin, C.-H. and Kuo, W.Failure Analysis of Nanocrystals Embedded High-k Dielectrics for Nonvolatile Memories,” submitted to IEEE International Reliability Physics Symposium (2008).Google Scholar
27. Luo, W. Yuan, T. Kuo, Y. Lu, J. Yan, J. and Kuo, W. Appl. Phys. Lett., 88, 202904 (2006).Google Scholar
28. Satake, H. and Toriumi, A. IEEE Trans. on Electron Devices, 47 (4), 741 (2000).Google Scholar