Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T01:31:25.206Z Has data issue: false hasContentIssue false

α-Relaxation and Morphology Transition of Perfluorosulfonate Ionomer Membranes

Published online by Cambridge University Press:  27 February 2015

B. R. Matos
Affiliation:
Nuclear and Energy Research Institute - IPEN, São Paulo, SP, 05508000, Brazil.
E. I. Santiago
Affiliation:
Nuclear and Energy Research Institute - IPEN, São Paulo, SP, 05508000, Brazil.
R. Muccillo
Affiliation:
Nuclear and Energy Research Institute - IPEN, São Paulo, SP, 05508000, Brazil.
I. A. Velasco-Davalos
Affiliation:
Institut National de la Recherche Scientifique, Varennes, Quebec, J3X 1S2, Canada.
A. Ruediger
Affiliation:
Institut National de la Recherche Scientifique, Varennes, Quebec, J3X 1S2, Canada.
A. C. Tavares
Affiliation:
Institut National de la Recherche Scientifique, Varennes, Quebec, J3X 1S2, Canada.
F. C. Fonseca
Affiliation:
Nuclear and Energy Research Institute - IPEN, São Paulo, SP, 05508000, Brazil.
Get access

Abstract

Nafion α-relaxation has been the subject of intense investigations as it regulates the performance of electric actuators and polymer electrolyte fuel cells (PEMFC). Dielectric spectroscopy and atomic force microscopy (AFM) measurements of Nafion membranes allowed identifying the conformation transition of the polymeric aggregates as the process underlying the α-transition. The dielectric permittivity curves of Nafion showed that for temperatures T > 120 °C, the α-relaxation displaces to lower frequencies. Such unusual behavior was attributed to an elongation of Nafion polymeric aggregates occurring at T ∼ 120 °C and is in agreement with both water uptake measurements and morphological changes inferred from AFM analyses.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Eisenberg, A., Kim, J-S., Introduction to Ionomers. Wiley-Interscience, 1 Ed. 1998.Google Scholar
Mauritz, K. A., Moore, R. B., Chem. Rev., 104, 4535 (2004).10.1021/cr0207123CrossRefGoogle Scholar
Matos, B. R., Goulart, C. A., Santiago, E. I., Muccillo, R., Fonseca, F. C., Appl. Phys. Lett., 109, 091904 (2014).CrossRefGoogle Scholar
Xie, T., Page, K. A., Eastman, S. A., Adv. Funct. Mater., 21, 2057 (2011).CrossRefGoogle Scholar
Matos, B. R., Dresch, M. A., Santiago, E. I., Linardi, M., de Florio, D. Z., Fonseca, F. C., J. Electrochem. Soc., 160, F43 (2013).CrossRefGoogle Scholar
Schönhals, A., Kremer, F., in Broadband Dielectric Spectroscopy. Kremer, F., Schönhals, A., Editors, p. 59, Springer Verlag, Berlin (2003).CrossRefGoogle Scholar
Steeman, P. A. M., van Turnhout, J., Colloid & Polym. Sci., 275, 2 (1997).CrossRefGoogle Scholar
Matos, B. R., Santiago, E. I., Rey, J. F. Q., Fonseca, F. C., Phys. Rev. E, 89, 052601 (2014).10.1103/PhysRevE.89.052601CrossRefGoogle Scholar
Osborn, S. J., Hassan, M. K., Divoux, G. M., Rhoades, D. W., Mauritz, K. A., Moore, R. B., Macromolecules, 40, 3886 (2007).CrossRefGoogle Scholar
Hassan, M. K., Abukmail, A., Mauritz, K. A., Eur. Polym. J., 48, 789 (2012).CrossRefGoogle Scholar
Bordi, F., Cametti, C., Colby, R. H., J. Phys.: Condens. Matter, 16, R1423(2004).Google Scholar
Kreuer, K. D., Solid State Ionics, 252, 93 (2013).CrossRefGoogle Scholar
Rubatat, L., Gebel, G., Diat, O., Macromolecules, 37, 7772 (2004).CrossRefGoogle Scholar
O’Dea, J. R., Economou, N. J., Buratto, S. K., Macromolecules, 46, 2267 (2013).CrossRefGoogle Scholar
Rumberger, B., Bennett, M., Zhang, J., Dura, J. A., Israeloff, N. E., J. Chem. Phys. 141, 071102 (2014).CrossRefGoogle Scholar