Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T18:44:18.804Z Has data issue: false hasContentIssue false

The Relative Radiation Resistance of Zirconolite, Pyrochlore, and Perovskite to 1.5 MeV Kr+ Ions

Published online by Cambridge University Press:  10 February 2011

Katherine L. Smith
Affiliation:
Materials Div., Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234, Australia
Nestor J. Zaluzec
Affiliation:
Materials Sci. Div., Argonne National Laboratory, 9700 South Cass Ave. Argonne IL, USA
Gregory R. Lumpkin
Affiliation:
Materials Div., Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234, Australia
Get access

Abstract

Zirconolite (CaZrTi2O7), pyrochlore (vIIIA2VIB2IVx6y) and perovskite (CaTiO3) are candidate phases for the immobilisation of rare earth elements (REEs) and actinides (ACTs) in various high level radioactive waste (HLW) forms [1]. The effect of radiation damage on the structure and consequently on the durability of these phases is important to predictive modelling of their behaviour in the repository environment and risk assessment

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Ewing, R.C., Weber, W.J. and Clinard, F.W. Jnr., Progress in Nuclear Energy, 29(2) (1995) 63.Google Scholar
2) Ewing, R.C. and Wang, L.M. (1992) Nuc. Instr. Meths. Phys. Res. B65, 319323.Google Scholar
3) White, T.J., Ewing, R.C., Wang, L.M., Forrester, J.S. and Montross, C. (1995) Mat. Res. Soc. Symp. Proc., 353, 14131420.Google Scholar
4) Smith, K.L., Zaluzec, N.J. and Lumpkin, G.R. Submitted to J. Nuclear Materials.Google Scholar
5) Lumpkin, G.R., Hart, K.P., McGlinn, P.J., Payne, T.E., Giere, R. and Williams, C.T., Radiochem. Acta 66/67,469474.Google Scholar
6) Weber, W.J., Wald, J.W. and Matzke, Hj., J. Nuc. Mater. 138 (1986) 196.Google Scholar
7) Karioris, F.G., Gowda, K. Appaji, Cartz, L. and Labbe, J.C., J. Nuc. Mater. 108/109 (1982) 748.Google Scholar
8) Weber, W.J., Hess, N.J. and Maupin, G.D., Nuc. Instruments and Methods in Phys Res. B65 (1992) 102.Google Scholar
9) Mosley, W.C., J. Amer. Ceram. Soc. 54 (1971) 475479.Google Scholar