Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T17:08:48.830Z Has data issue: false hasContentIssue false

Relationship Between Catalytic Activity and Electrical Conductivity in the Nonstoichiometric Nickel Manganite Spinels

Published online by Cambridge University Press:  10 February 2011

Christel Laberty
Affiliation:
Department of Chemical Engineering and Materials Science, University Of California at Davis, Davis CA 95616, USA
Pierre Alphonse
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques ESA5070, 118 Route de Narbonne, 31062 Toulouse Cedex, France.
Abel Rousset
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques ESA5070, 118 Route de Narbonne, 31062 Toulouse Cedex, France.
Get access

Abstract

Nonstoichiometric nickel manganite spinels NixMn3-x3δ/4O4+δ, have been synthesised by calcination of mixed oxalates in air at 350°C. The variation of the electrical conductivity σ with partial pressure of O2 shows that these oxides are n-type semiconductors; σ also varies with the nickel content and has a maximum at x = 0.6. The intrinsic catalytic activity of these oxides for CO/CO2 conversion varies with nickel content and the most active catalyst is at x=0.6 where the conversion starts at room temperature. The variation of the catalytic activity and the electrical conductivity and the nickel amount are correlated. Apparent activation energies are very low (less than 20 kJ/mol) and remain the same for all these mixed oxides. Similarly, the reaction order with respect to O2 and CO does not depend on the nickel content (order/O2 ≈ 0; order/CO ≈ 0.6). A reaction mechanism involving formation of oxygen ions adsorbed and carbonate species is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jabry, E., Boissier, G., Rousset, A., Carnet, R., Lagrange, A., J. Phys. Colloq., Cl, 47, 843 (1986).Google Scholar
2. Gillot, B., Baudour, J. L., Bouree, F., Metz, R., Legros, R., Rousset, A., Solid State Ionics, 58, 155 (1992).10.1016/0167-2738(92)90022-HGoogle Scholar
3. Tang, X. X., Manthiram, A., Goodenough, J. B., J. Less-Common Met., 156, 357 (1989).Google Scholar
4. Feltz, A., Töpfer, J., Z. Anorg. Alig. Chem., 576, 71 (1989).Google Scholar
5. Töpfer, J., Jung, J., Thermo. Acta., 202, 281 (1992).10.1016/0040-6031(92)85172-RGoogle Scholar
6. Laberty, C., Alphonse, P., Demai, J. J., Sarda, C., Rousset, A., Mat. Res. Bull., 32, 2, 249, (1996).Google Scholar
7. Laberty, C., Pielaszek, J., Alphonse, P., Rousset, A., submitted to publication.Google Scholar
8. Laberty, C., Vereist, M., Lecante, P., Alphonse, P., Mosset, A., Rousset, A., J. Solid State Chem., 129, 271, (1997).10.1006/jssc.1996.7241Google Scholar
9. Laberty, C., Thesis, Toulouse France, October 1997.Google Scholar
10. Fritsch, S., Legros, R., Rousset, A., Advances in Science and Technology, vol 2D. Ceramics: Charting the future, Vincenzini, P. Ed, Techna Srl, 2565, (1995).Google Scholar
11. Navrotsky, H.A., Kleppa, O.J., J. Inorg. Nucl. Chem., 29, 2701, (1967)10.1016/0022-1902(67)80008-3Google Scholar
12. Wolkenstein, Th., Théorie électronique de la catalyse sur les semi-conducteurs, Masson, Ed., Paris, (1961)Google Scholar
13. Laberty, C., Mirodatos, C., Alphonse, P., Rousset, A., to be published.Google Scholar