Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:25:51.709Z Has data issue: false hasContentIssue false

Relation Between Microstructures and Constitutive Behavior of Advanced Tempered Martensitic Steels

Published online by Cambridge University Press:  21 March 2011

Philippe Spätig
Affiliation:
Fusion Technology, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, CH-5232 Villigen PSI, SWITZERLAND
Robin Schäublin
Affiliation:
Fusion Technology, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, CH-5232 Villigen PSI, SWITZERLAND
Max Victoria
Affiliation:
Fusion Technology, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, CH-5232 Villigen PSI, SWITZERLAND
Get access

Abstract

In an effort to better understand the plasticity of the tempered martensitic steels, the strain-hardening of two 7-9Cr steels is examined in terms of dislocation mechanics. It is shown that, over the temperature range investigated (173K-523K), the strain-hardening as a function of stress can be described by an equation taking account the dislocation storage and annihilation. The model of strain-hardening used in this study is based on the original Kocks description of the dislocation density evolution with plastic strain but the heterogeneous distribution of dislocations resulting from the lath boundaries and prior austenite grain boundaries is taking into account. The effect of stress and temperature on the storage and annihilation is discussed. The relation between the determined mean dislocation path associated to the heterogeneous lath dislocation structure and the transmission electron microscope observations performed on the two different steels is outlined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ehrlich, K., Bloom, E. E., Kondo, T., J. Nucl. Mater. 283–287, 79 (2000).Google Scholar
[2] Alamo, A., Horsten, M., Averty, X., Materna-Morris, E. I., Rieth, M., Brachet, J. C., J. Nucl. Mater. 283–287, 353 (2000).Google Scholar
[3] Spätig, P., Schäublin, R., Gyger, S., Victoria, M., J. Nucl. Mater. 258–263, 1345 (1998).Google Scholar
[4] Spätig, P., Odette, G. R., Lucas, G. E., J. Nucl. Mater. 275, 324 (1999).Google Scholar
[5] Spätig, P., Odette, G. R., Donahue, E., Lucas, G. E., J. Nucl. Mater. 283–287, 721 (2000).Google Scholar
[6] Spätig, P., Baluc, N., Victoria, M., Mater. Scien. Engng A. 309–310, 425 (2001).Google Scholar
[7] Voce, E., J. Inst. Met. 74, 537 (1948).Google Scholar
[8] Kocks, U. F., ASME J. Eng. Mater. Tech. 98, 76 (1976).Google Scholar
[9] Kocks, U. F., Mecking, H., Strength of Metals and Alloys, ed. Haasen, P., Gerold, V. and Kostorz, G. (pergamon Press, Oxford, 1979) Vol. I, p. 345.Google Scholar
[10] Verdier, M., Bréchet, Y., Guyot, P., Acta Mater. 47, 127 (1999).Google Scholar
[11] Mecking, H., Kocks, U. K., Acta Metal. 29, 1865 (1981).Google Scholar
[12] Essmann, U., Acta Metall. 21, 1305 (1973).Google Scholar
[13] Schäublin, R., Spätig, P., Victoria, M., J. Nucl. Mater. 258–263, 1178 (1998).Google Scholar
[14] Hutchinson, J. W., J. Mech. Phys. Solids 12, 25 (1964).Google Scholar
[15] Lan, Y., Klaar, H.J., Dahl, W., Met. Trans. A, 23A, 545 (1992).Google Scholar
[16] Edsinger, K., PhD Thesis, University California Santa Barbara, p. 115 (1995).Google Scholar