Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:14:39.202Z Has data issue: false hasContentIssue false

Reduction of the Damage Induced in an Fib-Fabricated X-Tem Specimen

Published online by Cambridge University Press:  10 February 2011

N. I. Kato
Affiliation:
Reliability and Material Engineering, ITES, IBM Japan, 800, Ichimiyake, Yasu-cho, Yasu-gun, Shiga-ken 520-2392, Japan, naokoik@jp.ibm.com
K. Tsujimoto
Affiliation:
LCD Analysis Engineering, IBM Japan, 1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan
N. Miura
Affiliation:
Reliability and Material Engineering, ITES, IBM Japan, 800, Ichimiyake, Yasu-cho, Yasu-gun, Shiga-ken 520-2392, Japan, naokoik@jp.ibm.com
Get access

Abstract

In focused ion beam (FIB) fabrication of cross-sectional transmission electron microscopy (X-TEM) specimens, highly accelerated ion beams sometimes cause serious damage. The damage can be induced in both the specimen surface and in the side walls. We used X-TEM observations to investigate the side-wall damage induced by FIB fabrication in crystalline silicon. The damaged layer was found to be about 20 nm thick in the case of 30-keV FIB etching. We tried to reduce the damage by several methods, such as gas-assisted etching (GAE) with iodine, broad argon ion milling and wet etching. The damaged layer was 19 nm for GAE and 12 nm for argon ion milling with a beam current of 70 mA and the tilt angle between the beam and the specimen of 15 degrees. Wet etching using a mixture of nitric and hydrofluoric acid removes most of the damaged layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kirk, E. C. G., Cleaver, J. R. A., and Ahmed, H., Inst. Phys. Conf 691, 87(11), 1987.Google Scholar
[2] Young, R., Kirk, E. C. G., Williams, D. A., and Ahmed, H., Mat. Res. Soc. Proc. 205, 199, 1990.10.1557/PROC-199-205Google Scholar
[3] Basile, D. P., Boylan, R., Baker, B., Hayes, K., and Soza, D., Mat. Res. Soc. Proc. 23, 254, 1992.Google Scholar
[4] Saka, H., Nagaya, G., Sakuishi, T., Abe, S., and Muroga, A., Mat. Res. Soc. Proc. 45, 409, 1990.10.1557/PROC-409-45Google Scholar
[5] Tanaka, A., Sekiguchi, Y., Kurita, T., and Kuroda, S., J. Electron. Microsc. 290, 31, 1982 Google Scholar
[6] Kato, N. I, Miura, N., and Tsutsui, N., J. Vac. Sci. (in press).Google Scholar
[7] Ishitani, T., Tsuboi, H., Yaguchi, T., and Koike, H., J. Electron. Microsc. 322, 43, 1994.Google Scholar
[8] Ishitani, T. and Yaguchi, T., Microscopy Research and Technique, 35, 320, 1996.Google Scholar
[9] Gamo, K., Mat. Res. Soc. Proc. 577, 279, 1993.10.1557/PROC-279-577Google Scholar
[10] Lipp, S., Frey, L., Lehrer, C., Frank, B., Demm, E., and Ryssel, H., J. Vac. Sci. 3996, B14(6), 1996.Google Scholar
[11] Nebiker, P. W., Dobeli, M., Muhle, R., and Suter, M., Nuclear Instruments & Methods in Phys. Res. 897, 127128, 1996.Google Scholar
[12] Ochiai, Y, Gamo, K., and Namba, S., J. Vac. Sci. 67, B3(1), 1985.10.1116/1.583293Google Scholar
[13] Doorselaer, K. V, Van den Reeck, M., Van den Bempt, L., Young, R., and Whitney, J., ISTFA Proc. 405, 19, 1993.Google Scholar
[14] Casey, J. D. Jr, Doyle, A. F., Lee, R. G., Stewart, D. K., and Zimmermann, H., Microelectronic Engineering, 43, 24, 1994.Google Scholar
[15] Yamaguchi, A. and Nishikawa, T., J. Vac. Sci. 962, B13(3), 1995.Google Scholar
[16] Lee, T. W., ISTFA Proc. 319, 22, 1996.Google Scholar
[17] Murakami, Y., oral presentation at Semicon Kansai 1996.Google Scholar