Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T11:41:27.177Z Has data issue: false hasContentIssue false

Reducing solvent evaporation rates for the detachment of anodic TiO2 nanotubular membranes

Published online by Cambridge University Press:  24 July 2012

Guohua Liu
Affiliation:
Department of Micro and Nano Systems Technology, Vestfold University College, Horten, 3184, Norway
Nils Hoivik
Affiliation:
Department of Micro and Nano Systems Technology, Vestfold University College, Horten, 3184, Norway
Kaiying Wang
Affiliation:
Department of Micro and Nano Systems Technology, Vestfold University College, Horten, 3184, Norway
Henrik Jakobsen
Affiliation:
Department of Micro and Nano Systems Technology, Vestfold University College, Horten, 3184, Norway
Get access

Abstract

In this paper, a simple process to fabricate free of disorder nanostructures, large area, flat and mechanically robust free-standing TiO2 nanotube (TNT) membranes was developed. Self-organized TNTs with ultrahigh aspect ratio (∼2000) were fabricated via anodization of Ti foil in fluorine containing ethylene glycol. Then by controlling the evaporation rate of rinsing solvent on the as-anodized TNT films in atmosphere, large area TNT membranes were self-detached uniformly from the metallic Ti substrate during the drying process. These free-standing membranes may exhibit many potential applications for optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grimes, C.A., Mor, G.K., “TiO2 Nanotube Arrays Synthesis, Properties, and Applications”, Springer, New York, 2009, ISBN 978-1-4419-0067-8.Google Scholar
2. Roy, P., Berger, S., and Schmuki, P., Angew. Chem. Int. Ed. 50, 2904 (2011).Google Scholar
3. Liu, G.H., Hoivik, N., Wang, K.Y., Jakobsen, H., J Mater. Sci. 46, 7931(2011).Google Scholar
4. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A., Nano Lett. 5, 191(2005).Google Scholar
5. Mohapatra, S.K., Banerjee, S., Misra, M., Nanotechnology 19, 315601 (2008).Google Scholar
6. Rustom, A., Saffrich, R., Markovic, I., Walther, P., Gerdes, H.H., Science 303, 1007 (2004).Google Scholar
7. Albu, S.P., Ghicov, A., Macak, J.M., Hahn, R., Schmuki, P., Nano Lett. 7,1286 (2007).Google Scholar
8. Banerjee, S., Misra, M., Mohapatra, S.K., Howard, C., Mohapatra, S.K., Kamilla, S.K., Nanotechnology 21,145201 (2010).Google Scholar
9. Chen, Q.W., Xu, D.S., J. Phys. Chem. C. 113, 6310(2009).Google Scholar
10. Li, L.L., Chen, Y.J., Wu, H.P., Wang, N.S., Diau, E.W., Energy Environ. Sci. 4, 3420(2011).Google Scholar
11. Chen, Q.W., Xu, D.S., Wu, Z.Y., Liu, Z.F., Nanotechnology 19, 365708 (2008).Google Scholar
12. Wang, J., Lin, Z.Q., Chem. Mater. 20, 1257(2008).Google Scholar
13. Ali, G., Yoo, S.H., Kum, J.M., Kim, Y.N. and Cho, S.O., Nanotechnology 22, 245602(2011).Google Scholar
14. Lin, C.J., Yu, W.Y., Lu, Y.T., Chien, S.H., Chem. Commun. 6031(2008).Google Scholar
15. Wang, D.A., Liu, L.F., Chem. Mater. 22, 6656 (2010).Google Scholar
16. Jo, Y., Jung, I., Lee, I., Choi, J., Tak, Y., Electrochem. Commun. 12, 616(2010).Google Scholar
17. Lin, J., Chen, J.F., Chen, X.F., Electrochem. Commun. 12, 1062(2010).Google Scholar
18. Liu, G., Wang, K., Hoivik, N., Jakobsen, H., Sol. Energy Mater. Sol. Cells. 98, 24(2012).Google Scholar
19. Zhu, K., Vinzant, T.B., Neale, N. R., and Frank, A.J., Nano Lett. 7, 3739 (2007).Google Scholar
20. Singh, S., Festin, M., Barden, W.R.T., Xi, L., Francis, J.T., Kruse, P., ACS Nano. 2, 2363(2008).Google Scholar
21. Sreekantan, S., Hazan, R., Lockman, Z., Thin solid films 518, 16 (2009).Google Scholar
22. Cheng, Q., Ahmad, W., Liu, G.H., Wang, K.Y., Proc. of IEEE NANO 2011,1598.Google Scholar
23. Langford, J.I., Wilson, A.J.C., J. Appl. Cryst. 11,102(1978).Google Scholar