Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T01:32:20.108Z Has data issue: false hasContentIssue false

Redox behavior of Dicerium trioxide and the Possible Formation of Sesquioxide- C for Fuel cells

Published online by Cambridge University Press:  06 February 2015

Yang Yue
Affiliation:
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623
K.S.V. Santhanam*
Affiliation:
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623
K. Reed
Affiliation:
Cerion Enterprises, Rochester, NY 14610
T. Allston
Affiliation:
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623
*
*Corresponding author ksssch@rit.edu
Get access

Abstract

Cerium oxide is an important electrode material in fuel cells. It has been interconverted in the gaseous phase at high temperatures or in the presence of oxygen and more recently in the solid state by applying an electric field. In the dynamic change that occurs, the migration of oxygen vacancies have been initiated at a critical potential of 2.8 V. We wish to report here an electrochemical method where the conversion of cerium oxides is brought out in aqueous medium where hydrogen ion is assisting the process of conversion. Keeping dissolved oxygen level negligible, the conversion of Ce2O3 to CeO2 occurs at 0.72 V vs saturated calomel electrode (SCE) with hydrogen ion assisting the process and the reversible conversion at 0.15 V (SCE). The hydrogen ion assisted conversion is compared with the solid state conversion that operates on oxygen vacancy creation.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Press, R., Santhanam, K.S.V., Miri, M.J., Bailey, A. and Takacs, G.A., Introduction to Hydrogen Technology, Wiley, NJ (2009)Google Scholar
Zhao, Y., Wang, F., Tian, J., Yang, X., Zhan, L., Electrochimica Acta, 55, 89989003 (2010).CrossRefGoogle Scholar
Guo, D.J. and Jing, Z.H., Journal of Power Sources, 195, 38023805 (2010).CrossRefGoogle Scholar
Otsuka, K., Ushiyama, T. and Yamanaka, I., Chem. Lett., 1517 (1993).Google Scholar
Park, S.D., Vohs, J. M., and Gorte, R.J., Nature, 404, 265 (2000).CrossRefGoogle Scholar
Wei, Y., Li, M., Jiao, S., Huang, Q., Wang, G. and Fang, B., Electrochimica Acta, 52, 766772 (2006).CrossRefGoogle Scholar
Gangopadhyaya, S., Frolova, D. D., Masunova, A.E. and Seale, S., J. Alloys and Compounds, 584, 199 (2014)CrossRefGoogle Scholar
Wang, H., Zhang, H., Zhang, H., Bai, J., Ren, J., and Wang, S., Vacuum, 87 (2013) 8183 CrossRefGoogle Scholar
Zhu, Y., Li, G., Zhang, S., Song, J., Mao, C., Niu, H., Jin, B. and Tian, Y., Electrochimica Acta, 56, 75507554 (2011).CrossRefGoogle Scholar
Ha, H.W., Yun, N. J., Kim, M. H., Woo, M.H. and Kim, K., Electrochimica Acta, 51, 32973302 (2006).CrossRefGoogle Scholar
Wang, J., Deng, X., Xi, J., Chen, L., Zhu, W. and Qiu, X., J. Power Sources, 170, 297302 (2007).10.1016/j.jpowsour.2007.04.039CrossRefGoogle Scholar
Wei, Y., Huang, Q.A., Li, M.G., Huang, X.J., Fang, B. and Wang, L., Electrochimica Acta, 56, 85718575 (2011).CrossRefGoogle Scholar
Avellaneda, C.O., Berton, M.A.C. and Bulhões, L.O.S., Solar Energy Materials and Solar Cells, 92, 240244 (2008).CrossRefGoogle Scholar
Tang, L., Salamon, M. and De Guire, M.R., Cerium Oxide Thin Films on Solid Oxide Fuel Cell Anodes, Science of Advanced Materials, Volume 2, Number 1, 7989(11), (2010) American Scientific Publishers Google Scholar
Fiala, R., Vaclavu, M., Rednyk, A., Khalakhan, I., Vorokhta, M., Lavkova, J., Potin, V., Matolinova, I. and Matolin, V., Pt–CeOx thin film catalysts for PEMFC, Catalysis Today, Available online 30 April 2014.CrossRefGoogle Scholar
Otsuka, K., Ushiyama, T., and Yamanaka, I., Chem. Lett., 1517 (1993).CrossRefGoogle Scholar
Park, S.D., Vohs, J. M., and Gorte, R.J., Nature, 404, 265 (2000).CrossRefGoogle Scholar
Gschneidner, K.A., Eyring, L., Handbook on the physics and chemistry of rare earths, North-Holland Pub. Co., Sole distributors for the USA and Canada Elsevier North Holland, Amsterdam, New York, NY (1979)Google Scholar
Shannon, R. D., Acta Cryst, A32, 751767(1976).CrossRefGoogle Scholar
Marrocchelli, D., Bishop, S. R., Tuller, H. L., Watsonb, G. W. and Yildiz, B., : Phys. Chem. Chem. Phys., 14, 1207012074 (2012).CrossRefGoogle Scholar
Vescovo, E. and Carbone, C., Phys. Rev. B, 53, 4142 (1996).CrossRefGoogle Scholar
Trogadas, P. and Ramani, V., ECS Transactions, 25, 443 (2009).CrossRefGoogle Scholar
Yue, Y., Pierce, M., Santhanam, K.S.V. and Gopal, S. (to be published).Google Scholar