Published online by Cambridge University Press: 26 February 2011
The microstructure of high-energy (0.5–6.0 MEV) As-ion implanted Si and rapid thermal annnealed (RTA'd) Si has been studied by transmission electron microscopy (TEM). The implantations formed buried amorphous layers that recrystallized during RTA at different temperatures and became either single crystal or polycrystalline depending on their implation energy and fluence. At energies > 2.5 MeV and fluences < 1015 cm−2, recrystallization occurred below 400°C and regowth was single crystal. At an energy of 6 MeV and fluence of 5 × 1015 cm−2 recrystallization occurred above 600°C and regrowth was polycrystalline. When the implantation energy and fluence were reduced to 0.5 MeV and 2 × 1014 cm−2, respectively, recrystallization occurred above 600°C and regrowth was polycrystalline. The above results are explained by both the formation mechanisms of amorphous Si resulting from ion implantation and the structural order of a-Si.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.