Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T22:52:57.432Z Has data issue: false hasContentIssue false

Real-Time Investigation of NanoFET Current Surge Capability During Heavy Ion Irradiation

Published online by Cambridge University Press:  28 February 2013

Kan Xie
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
Steven Allen Hartz
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
Virginia M. Ayres
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
Zhun Liu
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
Benjamin W. Jacobs
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
Thomas Baumann
Affiliation:
National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA
Reginald M. Ronningen
Affiliation:
National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA
Albert F. Zeller
Affiliation:
National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA
Mary Anne Tupta
Affiliation:
Keithley Instruments, Inc., Cleveland, OH 44139, USA
Get access

Abstract

The real-time electronic performance of a gallium nitride nanowire-based field effect transistor was investigated at five-minute intervals over thirty minutes of continuous irradiation by Xenon-124 relativistic heavy ions. An initial current surge that resulted in device improvement rather than device failure was observed. The current surge, and subsequent electronic behavior, was modeled using a combined thermionic emission-tunnelling approach, leading to information about barrier height, carrier concentrations, expected temperature behavior, and tunnelling.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ayres, V. M., Jacobs, B. W., Englund, M. E., Carey, E. H., Crimp, M. A., Ronningen, R. M., Zeller, A. F., Halpern, J. B., He, M. Q., Harris, G. L., Liu, D., Shaw, H. C., Petkov, M. P., Diamond and Relat. Mater. 15, 1117 (2006).CrossRefGoogle Scholar
Petkov, M.P., Bell, L.D., Atwater, H.A., IEEE Trans. Nucl. Sci. 51, 3822 (2004).CrossRefGoogle Scholar
Kamezawa, C., Sindou, H., Hirao, T., Ohyama, H., Kuboyama, S., Physica B 376, 362 (2006).CrossRefGoogle Scholar
He, M., Zhou, P., Mohammad, S. N., Harris, G. L., Halpern, J. B., Jacobs, R., Sarney, W. L., Salamanca-Riba, L. J., J. Cryst. Growth 231, 357 (2001).CrossRefGoogle Scholar
Scheidenberger, C., Stohlker, T., Meyerhof, W. E., Geissel, H., Mokler, P. H., Blank, B., Nucl. Instr. Meth. Phys. B 142, 441 (1998).CrossRefGoogle Scholar
Jacobs, B. W., Ayres, V. M., Stallcup, R. E., Hartman, A., Tupta, M. A., Baczewski, A. D., Crimp, M. A., Halpern, J. B., He, M., Shaw, H. C., Nanotech. 18, 475710 (2007).CrossRefGoogle Scholar
Sze, S.M., Kwok, K.N., Physics of Semiconductor Devices, ISBN 978-0-471-14323-9 Google Scholar
Teflin, A. A., Léonard, F., Swartzentruber, B. S., Wang, X., Hersee, S. D., Phys. Rev Lett. 101, 076802 (2008).Google Scholar
Kim, J. R., Oh, H., So, H.M., Kim, J. J., Kim, J., Lee, C J., Lyu, S. C., Nanotech. 13, 701 (2002).CrossRefGoogle Scholar
Huang, Y., Duan, X., Cui, Y., Lieber, C.M., Nano Lett. 2,101 (2002).CrossRefGoogle Scholar
Schmitz, A.C., Ping, A.T., Asif Khan, M., Chen, Q., Yang, J.W., Adesida, I., Semicond. Sci. Technol. 11, 1464 (1996).CrossRefGoogle Scholar