Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T14:12:51.512Z Has data issue: false hasContentIssue false

Rate-Sensitivity of Mode I and Mode II Fracture of Concrete

Published online by Cambridge University Press:  25 February 2011

Surendra P. Shah
Affiliation:
Professor, Dept. of Civil Engineering, Northwestern University, Evanston, IL 60201
Reji John
Affiliation:
Graduate Student, Dept. of Civil Engineering, Northwestern University, Evanston, IL 60201
Get access

Abstract

For rational and accurate analysis of concrete structures subjected to impact or impulsive loads the knowledge of crack propagation under such dynamic loads is essential. Cracks frequently propagate under mixed-mode (opening and sliding: mode I and mode II) conditions. The rate of loading effects on the mechanical properties have been attributed to the rate sensitivity of crack propagation. The strain-rate effects may be different in mode I and mode II fracture of concrete. Single edge notched beams were subjected to varying rates of loading, to establish the mode I Stress Intensity Factor, KI vs. Crack Velocity, V, relationship for mortar and concrete. Impact tests were conducted using a Modified Instrumented Charpy Impact Test System. The rate of crack growth was obtained using brittle ‘Krak Gages'.

Mode I test results lead to the following conclusions. (1) Slow (prepeak) crack growth for concrete is larger than that of mortar, at a given strain rate. (2) Pre-peak crack growth decreases with increase in strain-rate. This could be the reason for decrease in pre-peak non-linearity at higher strain rates. Hence LEFM approach may be valid at high rates of loading. (3) log KI - log V relationship is non-linear especially at the higher rates of loading.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Suaris, W. and Shah, S. P., Introductory Report for the Interassociation (RILEM, CEB, IABSE, IASS) Symposium on Concrete Structures under Impact and Impulsive Loading, West Berlin, 33 (1982).Google Scholar
2. Suaris, W. and Shah, S. P., J. Str. Eng. ASCE, 109 (7), 1727 (1983).CrossRefGoogle Scholar
3. Suaris, W. and Shah, S. P., J. Eng. Mech, ASCE, 110 (6), 985 (1984).CrossRefGoogle Scholar
4. Suaris, W. and Shah, S. P., J. Str. Eng., ASCE, 111 (3), 563 (1985).CrossRefGoogle Scholar
5. Gopalaratnam, V. S., Shah, S. P. and John, R., Exp. Mech. SEM, 24 (2), 102 (1984).CrossRefGoogle Scholar
6. Gopalaratnam, V. S. and Shah, S. P., ACI J., Proceedings, To be published, (MS: 5960).Google Scholar
7. Gopalaratnam, V. S. and Shah, S. P., ACI J., Proceedings, 82 (3), 310 (1985).Google Scholar
8. Jenq, Y. S. and Shah, S. P., J. Eng. Frac. Mech., 21 (5), 1055 (1985).CrossRefGoogle Scholar
9. Legendre, D. and Mazars, J., in Advances in Fracture Mechanics, edited by Valluri, S. R. et al, ICF, New Delhi, 28412848, (1984).Google Scholar
10. Jenq, Y. S. and Shah, S. P., J. Eng. Mech. ASCE, 111 (10), 1227, (1985).CrossRefGoogle Scholar
11. Charles, R. J., J. Appl Phy. 29 (12), 16571662, (1958).CrossRefGoogle Scholar
12. Pollet, J.-C. and Burns, S. J., Int. J. Frac., 13 (5), 667679, (1977).CrossRefGoogle Scholar
13. Evans, A. G., Int. J. Frac., 10 (2), 251259, (1974).CrossRefGoogle Scholar
14. Wiederhorn, S. M., Evans, A. G., Fuller, E. R., and Johnson, H., J. Amer Ceramic Soc., 57 (7), 319323, (1974).CrossRefGoogle Scholar
15. Mihashi, H., and Wittmann, F. H., Heron (The Netherlands), 25 (3), (1980).Google Scholar
16. Mindess, S., in Application of Frac. Mech. to Cementitious Composites, edited by Shah, S. P., Martinus Nijhoff Pub., 617636, (1985).CrossRefGoogle Scholar
17. John, R., and Shah, S. P., J. Cem. Conc. and Agg., ASTM, To be published, Summer (1986).Google Scholar
18. Mott, N. F., Engineering, 165, 1618, (1948).Google Scholar
19. Roberts, D. K., and Wells, A. A., Engineering, 178, 820821, (1954).Google Scholar
20. Dulaney, E. N., and Brace, W. F., J. App. Phy., 31 (12), 22332236, (1960).CrossRefGoogle Scholar
21. Yoffe, E. H., Philosophical Mag., 42, 739750, (1951).CrossRefGoogle Scholar
22. Freund, L. B., J. Mech. Phy. and Solids, 20, 129140, (1972).CrossRefGoogle Scholar
23. Broberg, K. B., Arkiv for Fysik, 18, 159192, (1960).Google Scholar
24. Rose, L. R. F., Int. J. Frac., 12 (6), 799813, (1976).CrossRefGoogle Scholar
25. Rose, L. R. F., Proc. R. Soc. Lond., A.349, 497–521, (1976).CrossRefGoogle Scholar
26. Curran, D. R., Shockey, D. A., and Winkler, S., Int. J. Frac., 6 (3), 271278, (1970).CrossRefGoogle Scholar
27. Bhargava, J., and Rehnstrom, A., Cem. Conc. Res., 5, 239248, (1975).CrossRefGoogle Scholar
28. Mindess, S., Banthia, N., Ritter, A., and Skalny, J. P., in Cement-Based Composites: Strain Rate Effects on Fracture (eds. S. Mindess and S. P. Shah), MRS Symp. Proceedings, 64, MRS, Pittsburgh (in press).Google Scholar
29. Tada, H., Paris, P. C., and Irwin, G. R., Stress Analysis Handbook, Del Res. Corp., PA, (1973).Google Scholar
30. Wecharatna, M., and Shah, S. P., J. Str. Eng., ASCE, 108 (ST6), 14001413, (1982).Google Scholar
31. Velazco, G., Visalvanich, K. and Shah, S. P., Cem. Conc. Res.,10 (1), 4151, (1980).CrossRefGoogle Scholar
32. Kalthoff, J. F., Int. J. Frac, 27, 277298, (1985).CrossRefGoogle Scholar
33. Suaris, W., and Shah, S. P., J. Cem. Con. Agg., ASTM, 3 (2), 7783, (1981).Google Scholar
34. Bazant, Z. P. and Pfieffer, P. A., in 2nd Symposium on Interaction of Non-Nuclear Munitions on Structures, Florida, 1985.Google Scholar
35. Barr, B. I. G. and Liu, K. L. W., J. Mat. Sci. Letters, (2), 663–664 (1983).CrossRefGoogle Scholar
36. Wang, S. S., Goetz, D. P., and Corten, H. T., Int. J. Frac., 26, 215227 (1984).CrossRefGoogle Scholar
37. Gaire, G. S., Eng. Frac. Mech. 20 (1), 1121 (1984).CrossRefGoogle Scholar
38. Barret, J. D., and Foschi, R. O., Engg. frac. Mech., 9, 371378 (1977).CrossRefGoogle Scholar
39. Chisholm, D. B., and Jones, D. L., Exp. Mech. SEM, (1), 7–13 (1977).Google Scholar
40. Watkins, J., Int. J. Frac., 23, R135–R138 (1983).CrossRefGoogle Scholar
41. Raju, K. R., Int. J. Frac., 17, R193–R197 (1981).CrossRefGoogle Scholar
42. Iosipescu, N., J. Mat., 2 (3), 537566 (1967).Google Scholar
43. Kiger, S. A. and Getchell, J. V., Tech. Rep. S1–80-7, US Army Eng. Waterways Exp. Station, (1980).Google Scholar
44. Mutsuyoshi, H., and Machida, A., Private Communication.Google Scholar
45. Takeda, J.-I, Tachikawa, H., and Fujimoto, K., Interassociation (RILEM, CEB, IABSE, IASS) Symposium on Concrete Structures Under Impact and Impulsive Loading, W. Berlin, 8391, (1982).Google Scholar
46. Ross, T. J. and Wong, F. S., J. Eng. Mech, ASCE, 111 (3), 416430, (1985).CrossRefGoogle Scholar