Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-04T16:35:42.276Z Has data issue: false hasContentIssue false

Rapid Thermal Processing and The Quest for Ultra Shallow Boron Junctions

Published online by Cambridge University Press:  28 February 2011

Tom Sedgwick*
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

Rapid Thermal Processing (RTP) can minimize processing time and therefore minimize dopant motion during annealing of ion implanted junctions. In spite of the advantage of short time annealing using RTP, the formation of shallow B junctions is thwarted by channeling, transient enhanced diffusion and concentration enhanced diffusion effects all of which lead to deeper B profiles. Channeling and transient enhanced diffusion can be avoided by preamorphizing the silicon before the B implant. However, defects at the original amorphous/crystal boundary persist after annealing. Very low energy B implantation can lead to very shallow dopant profiles and in spite of channeling effects, offers an attractive potential shallow junction technology. In all of the shallow junction formation techniques RTP is required to achieve both high activation of the implanted species and minimal diffusion of the implanted dopant.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wach, W. and Wittmaack, K., Nuclear Instruments and Methods, Vol. 194, (North-Holland Publishing Co., Amsterdam, 1982) p. 113.Google Scholar
2. Wilson, R.G., J. Appl. Phys. Vol. 54, 6879 (1983)Google Scholar
3. Michel, A.E. Kastl, R.H., Mader, S., Masters, B.J. and Gardner, J.A., Appl. Phys. Lett. Vol. 44, 404 (1984)Google Scholar
4. Seidel, T.E., Lischner, D.J., Pai, C.S., Knoell, R.V., Maher, D.M. and Jacobson, D.C., Nuclear Instruments and Methods in Physics Research Vol. B7/8 (North-Holland, Amsterdam,1985) p. 251 Google Scholar
5. Sedgwick, T.O., Cohen, S.A., Oehrlein, G.S., Deline, V.R., Kalish, R. and Shatas, S., “VLSI Science and Technology/1984”, Ed. Bean, K.E. and Rozgonyi, G., Vol. 84–7 The Electrochemical Society, Pennington, NJ. p 192 (1984)Google Scholar
6. Sedgwick, T.O., Cohen, S.A., Oehrlein, G.S., and Deline, V.R., Presented at the Electronic Materials Committee Meeting, Santa Barbara, CA, 1984 (unpublished)Google Scholar
7. Vasudev, P.K., Schmitz, A.E. and Olson, G.L., Mat. Res. Soc. Symp. Proc. Vol. 35, 367 (1985)Google Scholar
8. Sadana, D.K., Maszara, W., Wortman, J.J., Rozgonyi, G.A. and Chu, W.K., J. Electrochem. Soc., Vol. 131, 943 (1984); T.E. Seidel, R. Knoell, F.A. Stevie, G. Poli and B. Schwartz, Presented at the Spring Meeting of the Electrochemical Society, May 6-11, 1984 in Cincinnati, Ohio.Google Scholar
9. Davies, D.E., IEEE Electron Device Lett., Vol. EDL–6, 397 (1985)Google Scholar
10. Cohen, S.A., Sedgwick, T.O. and Speidell, J.L., Mat. Res. Soc. Symp. Proc. Vol. 23, 321 (1984)Google Scholar
11. Sedgwick, T.O. and Kwor, R. (unpublished work)Google Scholar
12. Cho, K., Allen, W.R., Finstad, T.G., Chu, W.K., Liu, J. and Wortman, J.J. Nuclear Instruments and Methods in Physics Research, Vol. B7/8, (North-Holland Publishing Co., Amsterdam, 1985) p. 265; R.F. Lever, (private communication)Google Scholar
13. Lasky, J.B., J. Appl. Phys. Vol.54 6015 (1983)Google Scholar
14. Hodgson, R.T., Deline, V., Mader, S.M., Morehead, F.F. and Gelpey, J., Mat. Res. Soc. Symp. Proc. Vol. 23, 253 (1984)Google Scholar
15. Seidel, T.E., IEEE Electron Device Lett., Vol. EDL–4, 353 (1983)Google Scholar
16. Carter, C., Maszara, W., Sadana, D.K., Rozgonyi, G.A., J. Liu and Wortman, J., Appl. Phys. Lett. Vol. 44, 459 (1984)Google Scholar
17. Maszara, W., Carter, C., Sadana, D.K., Liu, J., Ozguz, V., J. Wortman and Rozgonyi, G., Mat. Res. Soc. Symp. Proc. Vol. 23, 285 (1984)Google Scholar
18. Calder, I.D., Naguib, H.M., Houghton, D. and Shepherd, F.R., Mat. Res. Soc. Symp. Proc.., Vol. 35, 353 (1985)Google Scholar
19. Myers, E., Rozgonyi, G.A., Sadana, D.K., Maszara, W., Wortman, J.J. and Narayan, J.,Mat. Res. Soc. Symp. Proc. ., Vol. 52, (1986 in press)Google Scholar
20. Liu, J., Wortman, J.J., Chu, W.K. and Fair, R.B., (unpublished work)Google Scholar
21. Narayan, J., Olson, G.L. and Holland, O.W., Mat. Res. Soc. Symp. Proc. Vol. 4, 183 (1982)Google Scholar
22. Katz, W., Smith, G.A., Reihl, R.F. and Koch, E.F., Mat. Res. Soc. Symp. Proc.., Vol. 23, 299 (1984)CrossRefGoogle Scholar
23. Reihl, R.F., Smith, G.A., Katz, W. and Koch, E.F., Appl. Phys. Lett. Vol. 42, 575 (1983)Google Scholar
24. Ganin, E., Sedgwick, T.O. and Scilla, G.J. (unpublished results)Google Scholar
25. Sadana, D.K., Washburn, J., Byrne, P.F. and Cheung, H.W., Mat. Res. Soc. Symp. Proc. Vol. 14, 511 (1983)Google Scholar
26. Sadana, D.K., Shatas, S.C. and Gat, A., Inst. Phys. Conf. Ser. No. 67: Sec. 3, 143 (1983)Google Scholar
27. Seidel, T.E., Maher, D.M. and Knoell, R.V., Proc. 13th Int. Conf. on Defects in Semiconductors, edited by Kimerling, L.C. and Parsey, J.M. Jr, (Metall. Soc. of AIME, New York, 1985) p.523 Google Scholar
28. Maher, D.M., Knoell, R.V., Ellington, M.B. and Jacobson, D.C., Mat. Res. Soc. Symp. Proc. Vol. 52, (1986 in press)Google Scholar
29. Lunnon, M.E., Chen, J.T. and Baker, J.E., Appl. Phys. Lett. Vol. 45, 1056 (1984)Google Scholar
30. Tung, N.C., J. Electrochem. Soc. Vol. 132, 914 (1985)Google Scholar
31. Kamgar, A.V., Appl. Phys. Lett. Vol. 45, 754 (1984)Google Scholar
32. Swartz, R.G., IEEE Electron Device Lett., Vol. EDL–5, 29 (1984)Google Scholar
33. Ota, Y., J. Appl. Phys., Vol. 51, 1102 (1980)Google Scholar
34. Swartz, R.G., IEEE Electron Device Lett., Vol. EDL–3, 138 (1982)Google Scholar
35. Ryssel, H., Muller, K., Haberger, K., Henkelmann, R. and Jahnel, F., Appl. Phys. Vol. 22, 35 (1980)Google Scholar
36. Michel, A.E., Mat. Res. Soc. Symp. Proc. Vol. 52, (1986 in press)Google Scholar