Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T15:04:09.905Z Has data issue: false hasContentIssue false

Rapid Optimization of Pentacene Buffer for Rubrene Thin Film Transistors by Using Combinatorial MBE

Published online by Cambridge University Press:  26 February 2011

Masamitsu Haemori
Affiliation:
haemori@oxide.msl.titech.ac.jp, Tokyo Institute of Technology, Materials and Structures Laboratory, 4259 Nagatsuta, Yokohama, N/A, 226-8503, Japan, +81-45-924-5314, +81-45-924-5377
Jun Yamaguchi
Affiliation:
koinuma1@oxide.msl.titech.ac.jp, Tokyo Institute of Technology, Materials and Structures Laboratory, Japan
Seiichiro Yaginuma
Affiliation:
koinuma1@oxide.msl.titech.ac.jp, Tokyo Institute of Technology, Materials and Structures Laboratory, Japan
Kenjji Itaka
Affiliation:
koinuma1@oxide.msl.titech.ac.jp, The University of Tokyo, Graduate School of Frontier Sciences, Japan
Hideomi Koinuma
Affiliation:
koinuma1@oxide.msl.titech.ac.jp, NIMS-COMET, Japan
Get access

Abstract

By means of insertion of thin pentacene buffer layer, we have succeeded in the fabrication of highly c-axis oriented rubrene (5,6,11,12-tetraphenylnaphthacene) thin films and their field effect transistors (FETs). In the case without pentacene buffers, only amorphous rubrene films were obtained and their FETs did not show operation. After optimization of pentacene buffer by using combinatorial thickness-gradient method, we obtained the crystalline rubrene thin films and their FETs showed p-type operation with a mobility of 0.05 cm2/V·s and an on-off ratio of 106.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dimitrakopoulos, C. D., Malenfant, P. R. L., Adv. Mater. 14, No.2, 99 (2002).Google Scholar
2. Bao, Z., Adv. Mater. 12, No.3, 227 (2000).Google Scholar
3. Sundar, V. C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R. L., Someya, T., Gershenson, M. E. and Rogers, J. A., Science 303,1664 (2004).Google Scholar
4. De Bore, R. W. I., Gershenson, M. E., Morpurgo, A. F. and Podzorov, V., Phys. Stat. Sol. 201, No.6, 1302 (2004).Google Scholar
5. Fong, H. H., So, S. K., Sham, W. Y., Lo, C. F., Wu, Y. S. and Chen, C. H.: Chem. Phys. 298, 119 (2004).Google Scholar
6. Koinuma, H. and Takeuchi, I., Nature Mater. 3, 429 (2004).Google Scholar
7. Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., and Miyamoto, A., Appl. Phys. Lett. 67, 2615 (1995).Google Scholar
8. Yamaguchi, J., Yaginuma, S., Haemori, M., Itaka, K., and Koinuma, H., Jap. J. Appl. Phys. 44, No. 6A, 37573759 (2005).Google Scholar
9. Itaka, K., Yamashiro, M., Yamaguchi, J., Yaginuma, S., Haemori, M. and Koinuma, H., Appl. Sur. Sci. (2005) (in press).Google Scholar
10. Haemori, M., Yamaguchi, J., Yaginuma, S., Itaka, K., and Koinuma, H., Jap. J. Appl. Phys. 44, No. 6A, 37403742 (2005).Google Scholar