Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:43:24.790Z Has data issue: false hasContentIssue false

Raman Spectroscopic Study Of Ion-Implanted And Annealed Silicon.

Published online by Cambridge University Press:  15 February 2011

David. D. Tuschel
Affiliation:
Imaging Research and Advanced Development Eastman Kodak Company, Rochester, NY 14650–2017
James P. Lavine
Affiliation:
Microelectronics Technology Division Eastman Kodak Company, Rochester, NY 14650–2008
Jeffrey B. Russell
Affiliation:
Microelectronics Technology Division Eastman Kodak Company, Rochester, NY 14650–2008
Get access

Abstract

Raman spectroscopy is used to characterize silicon implanted with arsenic and then annealed. The implant dose ranged from 2 × 1012 to 2 × 1013/cm2. The as-implanted samples show a decreased Raman intensity of the 520 cm−1 optical mode, and increased Raman intensity between 400 and 500 cm−1 with respect to an unimplanted silicon wafer. The higher arsenic doses show an increase in the second-order transverse acoustic-mode (TA) intensity around 300 cm−1 relative to the secondorder transverse optical-mode (TO) intensity near 970 cm−1. Annealing restores the 2TA/2TO relative intensities and sharpens the weak peaks between 600 and 900 cm−1. The Raman spectrum is altered by the lowest dose implant and the annealing steps do not lead to a complete recovery of the pre-implant Raman spectrum. This permits the monitoring of lowdose ion-implant damage recovery with Raman spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Peercy, P.S., Appl. Phys. Lett. 18, 574 (1971).Google Scholar
2. Huang, X., J. Phys. D: Appl. Phys. 28, 202 (1995).Google Scholar
3. Huang, X., Ninio, F., Brown, L.J., and Prawer, S., J. Appl. Phys. 7 7, 5910 (1995).Google Scholar
4. Othonos, A., Christofides, C., Boussey-Said, J., and Bisson, M., J. Appl. Phys. 75, 8032 (1994).Google Scholar
5. Balkanski, M., Morhange, J.F., and Kanellis, G., J. Raman Spectros. 10, 240 (1981).Google Scholar
6. Uchinokura, K., Sekine, T., and Matsuura, E., Solid State Commun. 11, 47 (1972).Google Scholar
7. Uchinokura, K., Sekine, T., and Matsuura, E., J. Phys. Chem. Solids 3 5, 171 (1974).Google Scholar
8. Cardona, M., Chen, S.C., and Varma, S. P., Phys. Rev. B 23, 5329 (1981).Google Scholar
9. Zhang, P.X., Goldberg, R.D., Mitchell, I.V., Schultz, P.J., and Lockwood, D.J, in Materials Synthesis and Processing Using Ion Beams, edited by Culbertson, R.J., Holland, O.W., Jones, K.S., and Maex, K. (Mater. Res. Soc. Symp.Proc. 316, Pittsburgh, PA, 1994), p. 8792.Google Scholar
10. Braunstein, G., Tuschel, D., Chen, S., and Lee, S.-T., J. Appl. Phys., 66, 3515 (1989).Google Scholar
11. Mizoguchi, K., Harima, H., and Nakashima, S.-i., J. Appl. Phys. 77, 3388 (1995).Google Scholar