Published online by Cambridge University Press: 15 February 2011
Raman spectroscopy is used to characterize silicon implanted with arsenic and then annealed. The implant dose ranged from 2 × 1012 to 2 × 1013/cm2. The as-implanted samples show a decreased Raman intensity of the 520 cm−1 optical mode, and increased Raman intensity between 400 and 500 cm−1 with respect to an unimplanted silicon wafer. The higher arsenic doses show an increase in the second-order transverse acoustic-mode (TA) intensity around 300 cm−1 relative to the secondorder transverse optical-mode (TO) intensity near 970 cm−1. Annealing restores the 2TA/2TO relative intensities and sharpens the weak peaks between 600 and 900 cm−1. The Raman spectrum is altered by the lowest dose implant and the annealing steps do not lead to a complete recovery of the pre-implant Raman spectrum. This permits the monitoring of lowdose ion-implant damage recovery with Raman spectroscopy.