Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T22:04:09.870Z Has data issue: false hasContentIssue false

Raman and Photoluminescence Spectroscopic Study of 1-Undecene Functionalized Nanodiamonds

Published online by Cambridge University Press:  02 December 2013

Y. Astuti
Affiliation:
School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK Chemistry Department, Science and Mathematics Faculty, Diponegoro University, Central Java, 50275, Indonesia
N. R. J. Poolton
Affiliation:
Spectral Imaging Systems, 36 Waterside House, Denton Mill, Carlisle CA2 5HF, UK
L. Šiller
Affiliation:
School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
Get access

Abstract

Nanodiamond holds great interest in a variety of optical applications, the properties being correlated with surface modification, and the presence of both impurities and defects (contained either on their surface or within the crystal structure). Undecyl-nanodiamond produced by attachment of 1-undecene onto the nanodiamond surface could be a good candidate as a luminescent marker in the future; therefore, understanding of its optical properties is essential. In this work, the optical properties of the acid-purified nanodiamond and undecyl-nanodiamond were characterised using surface enhanced Raman spectroscopy (SERS) and photoluminescence spectroscopy. The results demonstrate that the characteristic diamond Raman signal at 1330 cm-1 was still observed after chemical surface modification, while the signal at ∼1600 cm-1 (attributed to graphite bands) disappeared after the modification. Broad photoluminescence emission is detected in the range 1.5-2.5 eV (500-800 nm), as typically found for isolated nanodiamond; these emission bands became narrower with attachment of 1-undecene as compared to the sample without surface functionalisation. The observed emission could be related to structural disorder on the nanodiamond surface. The temperature dependence of the intensity, peak position and band widths of each sample has been characterised.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shenderova, O.A., Gruen, D.M., Ultrananocrystalline Diamond, William Andrew Publishing, Norwich, New York, 2006.Google Scholar
Krueger, A., J. Mater. Chem. 21, 1257112578 (2011).CrossRefGoogle Scholar
Schrand, A.M., Hens, S.A.C. & Shenderova, O.A., Crit. Rev. Solid State Mater. Sci. 34, 1874 (2009).CrossRefGoogle Scholar
Mochalin, V. N., Gogotsi, Y., J. Am. Chem. Soc. 131, 45944595 (2009).CrossRefGoogle Scholar
Astuti, Y., Butenko, Y. V., Alves, L., van Papendrecht, G., Bangert, U., Gass, M., Mendis, B. and Šiller, L., Manuscript: Deaglomeration and evaporation of nanodiamonds, submitted .Google Scholar
Šiller, L., Butenko, Y.V., Method for the separation of diamond particle clusters, UK patent application no. GB 1207327.6, filling date 27th April 2012.Google Scholar
Link, S., Wang, Z.L., El-Sayed, M.A., J. Phys. Chem. B 103, 35293533 (1999).CrossRefGoogle Scholar
Poolton, N. R. J., Bos, A. J. J., Wallinga, J., De Haas, J. T. M., Dorenbos, P., De Vries, L., Kars, R. H., Jones, G. O., Drozdowski, W., J. Lumin. 130, 14041414 (2010).CrossRefGoogle Scholar
Liu, Y. L., Sun, K. W., Nanoscale Res. Lett. 5, 10451050 (2010).CrossRefGoogle Scholar
Mochalin, V., Osswald, S., Gogotsi, Y., Chem. Mater. 21, 273279 (2009).CrossRefGoogle Scholar
Lueking, A., Gutierrez, H., Narayanan, D., Clifford, C. E. B., Jain, P. (2010) Lower pressure synthesis of diamond material. US 7,754,179 B2 23 (Patent).Google Scholar
Lopez-Rios, T., Sandre, E., Leclercq, S., Sauvain, E., Phys. Rev. Lett. 76, 49354938 (1996).CrossRefGoogle Scholar
Tobin, M. C., Laser Raman Spectroscopy, Wiley-Interscience, New York, 1971.Google Scholar
Ferrari, A.C., Robertson, J., Phys. Rev. B 63, 12140511214054 (2001).CrossRefGoogle Scholar
Vandenabeele, P., Wehling, B., Moens, L., Edwards, H., De Reu, M., Van Hooydonk, G., Anal. Chim. Acta 407, 261274 (2000).CrossRefGoogle Scholar
Inagaki, F., Tasumi, M., Miyazawa, T., J. Raman Spectrosc. 3 335343 (1975).CrossRefGoogle Scholar
Naylor, C. C., Meier, R. J., Kip, B. J., Williams, K. P. J., Mason, S. M., Conroy, N., Gerrard, D. L., Macromolecules 28, 29692978 (1995).CrossRefGoogle Scholar
Vlasov, I. I., Shenderova, O. A., Turner, S., Lebedev, O. I., Basov, A. A., Sildos, I., Rahn, M., Shiryaev, A. A., Van Tendeloo, G., Small 6, 687694 (2010).CrossRefGoogle Scholar
Keblinski, P., Wolf, D., Cleri, F., Phillpot, S.R., Gleiter, H., MRS Bulletin 23, 3641 (1998).CrossRefGoogle Scholar
Hirai, H., Terauchi, M., Tanaka, M., Kondo, K., Diam. Relat. Mater 8, 17031706 ((1999).CrossRefGoogle Scholar
Kompan, M., Terukov, E., Gordeev, S., Zhukov, S., Nikolaev, Y., Phys. Solid State 39, 19281929 (1997).CrossRefGoogle Scholar
Catledge, S.A., Singh, S., Adv. Sci. Lett. 4, 512515 (2011).CrossRefGoogle Scholar