Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:01:03.528Z Has data issue: false hasContentIssue false

Radiation Induced Nucleation of Nanoparticles in Silica

Published online by Cambridge University Press:  15 February 2011

D. Ila
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL 35762-1447, USA
E. K. Williams*
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL 35762-1447, USA
D. B. Poker*
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL 35762-1447, USA
D. K. Hensley
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
C. Klatt
Affiliation:
Max Planck-Institut für Kernphysik, Postfach 10398 D-69029 Heidelberg, Germany
S. Kalbitzer
Affiliation:
Max Planck-Institut für Kernphysik, Postfach 10398 D-69029 Heidelberg, Germany
*
Corresponding author: Tel (256)851-5866, FAX (256)851-5868, e-mail ila@cim.aamu.edu
Corresponding author: Tel (256)851-5866, FAX (256)851-5868, e-mail ila@cim.aamu.edu
Get access

Abstract

In this paper, we present the results of our investigation of producing nanoclusters of gold in silica at fluences of two orders of magnitude less than what is traditionally used This is accomplished by implanting 2.0 MeV Au into silica followed by MeV bombardment by MeV Si ions. The size of the nanoclusters, ranging from one to 10 nanometers, is controlled by the implantation dose and by the total electronic energy deposited by each post bombarding ion in the implanted layer. By both indirect measurement methods, such as optical absorption spectrophotometry (non-destructive), and direct methods, such as transmission electron microscopy (destructive) we show how and at what concentrations gold nucleates to form nanoparticles by radiation-enhanced nucleation at a dose below that needed for spontaneous nanoparticle formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arnold, G. W., J. Appl. Phys. 46, 4466 (1975)Google Scholar
[2] Arnold, G. W. and Bordes, J. A., J. Appl. Phy. 48, 1488 (1977).Google Scholar
[3] Magruder, R. H. III, Zuhr, R. A., Osborne, D. H. Jr.,Nucl. Inst. & Meth. in Phys. Res. B99, 590 (1995).Google Scholar
[4] Haglund, R. F. Jr., Osborne, D. H. Jr., Magruder, R. H. III, White, C. W., Zuhr, R. A., Townsend, P. D., Hole, D. E., and Leuchtner, R. E., Mat. Res. Soc. Symp. Proc. Vol. 354, 629 (1995).Google Scholar
[5] White, C. W., Zhou, D. S., Budai, J. D., Zuhr, R. A., Magruder, R. H. and Osborne, D. H., Mat. Res. Soc. Symp. Proc. Vol. 316, 499 (1994).Google Scholar
[6] Fukumi, K., Chayahara, A., Adachi, M., Kadono, K., Sakaguchi, T., Miya, M., Horino, Y., Kitamura, N., Hayakawa, J., Yamashita, H., Fujii, K. and Satou, M., Mat. Res. Soc. Symp. Proc. Vol. 235, 389 (1992).Google Scholar
[7] Ila, D., Wu, Z., Zimmerman, R. L., Sarkisov, S., Smith, C. C., Poker, D. B., and Hensley, D. K., Mat. Res. Soc. Symp. Proc. 457, 143 (1997).Google Scholar
[8] Ila, D., Williams, E. K., Sarkisov, S., Smith, C. C., Poker, D. B., and Hensley, D. K., Nucl. Instr. Meth. in Phys. Res. B141, 289 (1998).Google Scholar
[9] Ila, D., Wu, Z., Smith, C. C., Poker, D. B., Hensley, D. K., Klatt, C. and Kalbitzer, S., Nucl. Instr. Meth. in Phys. Res. B127, 570 (1996).Google Scholar
[10] Ila, D., Williams, E. K., Smith, C. C., Poker, D. B., Hensley, D. K., Klatt, C. and Kalbitzer, S., Nucl. Instr. Meth. in Phys. Res. B, (1999).Google Scholar
[11] Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press Inc., New York, 1985).Google Scholar
[12] Schineller, E. R., Flam, R. P. and Wilmot, D. W., J. Opt. Soc. Am. 58, 1171 (1968).Google Scholar
[13] Townsend, P. D., Nucl. Instr. Meth. in Phys. Res. B46, 18 (1990).Google Scholar
[14] Mie, G., Ann. Physik 25, 377 (1908).Google Scholar
[15] Verhaegen, M., Allard, L.B., Brebner, J. L., Essid, M., Roorda, S., Albert, J., Nucl. Instr. Meth. in Phys. Res. B106, 438 (1995).Google Scholar