Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T01:32:59.226Z Has data issue: false hasContentIssue false

Quantum Dot Nanodevice with Electron-Lattice Coupling

Published online by Cambridge University Press:  01 February 2011

Karel Král*
Affiliation:
kral@fzu.cz, Institute of Physics, ASCR, v.v.i., Prague 8, Czech Republic
Get access

Abstract

The electronic current-voltage characteristics of a nanotransistor is studied. The nanotransistor is assumed to consist of a quantum dot active region connected to the source and drain wires and also attached to a gate. The electric current is shown to be influenced by the coupling of electrons to the longitudinal optical phonons, namely, by the up-conversion of the electrons to the higher excited states in a quantum dot, due to a nonadiabatic effect of the lattice vibrations. In the nanotransistor with asymmetric source and drain contacts the up-conversion leads to a spontaneous electric current, or to a spontaneous voltage between the electrodes. We remind existing experiments which might be related to the effect considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fawcett, W., Boardman, A. D., Swain, S., J. Phys. Chem. Solids 31, 1963 (1970).;Google Scholar
Obreschkow, D., Michelini, F., Dalessi, S., Kapon, E., and Dupertuis, M.-A., Phys. Rev. B 76, 035329 (2007).10.1103/PhysRevB.76.035329Google Scholar
2. Král, K., Zdeněk, P., Khás, Z., Surface Science 566–568, 321326 (2004).Google Scholar
3. Král, K., Khás, Z.: Phys. Rev. B 57, R2061 (1998).Google Scholar
4. Rafailov, E. U., McRobbie, A. D., Cataluna, M. A., O'Faolain, L., and Sibbett, W., Livshits, D. A., Appl. Phys. Lett. 88, 041101 (2006);Google Scholar
Glinka, Y. D., Lin, S.-H., Hwang, L.-P., Chen, Y.-T., Tolk, N. H., Phys. Rev. B 64, 085421 (2001).Google Scholar
5. Král, K., Khás, Z., Microelectronic Engineering51-52, 93 (2000);Google Scholar
Král, K., Microelectronics Journal 39, 375 (2008).Google Scholar
6. Marcus, R. A., Journ. Electroanalytical Chemistry 438, 251 (1997).Google Scholar
7. Král, K., Khás, Z., phys. stat. sol. (b) 208, R5 (1998); K. Král, Z. Khás, arXiv:cond-mat/0103061.Google Scholar
8. Zahid, F., Paulsson, M., Datta, S., in “Advanced Semiconductors and Organic Nano-Techniques”, ed. H. Morkoc, Academic Press 2003; M. Paulsson, F. Zahid S. Datta, arXiv:cond-mat/0208183.Google Scholar
9. Meir, Y., Wingreen, N. S., Phys. Rev. Lett. 68, 2512 (1992).Google Scholar
10. Král, K., Zdeněk, P., Physica E 29, 341 (2005).Google Scholar
11. Král, K., Czechoslovak J. Phys. 56, 33 (2006);Google Scholar
Král, K., Lin, C.Y., International Journal of Modern Physics B 22, no. 20, 3439 (2008).Google Scholar
12. Ullien, D., Cohen, H., Porath, D., Nanotechnology 18, 424015 (2007).10.1088/0957-4484/18/42/424015Google Scholar
13. Horsell, A. K., Savchenko, Y. M., Galperin, V. I., Kozub, V. M., Vinokur, D. A., Ritchie, Europhys. Lett., 71, 658 (2005).Google Scholar